[main]mg|pages
with H. Koch and T. Oh. Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity. Journal European Mathematical Society, 2022. To appear. arXiv:1811.07808
with M. Hofmanová. A PDE Construction of the Euclidean \(\Phi^4_3\) Quantum Field Theory. Communications in Mathematical Physics, apr 2021. 10.1007/s00220-021-04022-0
with L. Galeati. Noiseless regularisation by noise. Revista Matemática Iberoamericana, jul 2021. 10.4171/RMI/1280
with N. Perkowski. The infinitesimal generator of the stochastic Burgers equation. Probability Theory and Related Fields, aug 2020. 10.1007/s00440-020-00996-5
with N. Barashkov. A variational method for \(\Phi^4_3\). Duke Mathematical Journal, 169(17):3339–3415, nov 2020. 10.1215/00127094-2020-0029
with P. Imkeller and N. Perkowski. Paracontrolled distributions and singular PDEs. Forum of Mathematics. Pi, 3:0, 2015. 10.1017/fmp.2015.2
with F. Flandoli and E. Priola. Well-posedness of the transport equation by stochastic perturbation. Inventiones Mathematicae, 180(1):1–53, 2010. 10.1007/s00222-009-0224-4
Ramification of rough paths. Journal of Differential Equations, 248(4):693–721, 2010. 10.1016/j.jde.2009.11.015
Controlling rough paths. Journal of Functional Analysis, 216(1):86–140, 2004. 10.1016/j.jfa.2004.01.002
Cannizzaro, Giuseppe, Massimiliano Gubinelli, and Fabio Toninelli. ‘Gaussian Fluctuations for the Stochastic Burgers Equation in Dimension $d\geq 2$'. arXiv, 12 April 2023. https://doi.org/10.48550/arXiv.2304.05730
De Vecchi, Francesco C., Massimiliano Gubinelli, and Mattia Turra. ‘A Singular Integration by Parts Formula for the Exponential Euclidean QFT on the Plane'. arXiv, 11 December 2022. https://doi.org/10.48550/arXiv.2212.05584
De Vecchi, Francesco C., Luca Fresta, and Massimiliano Gubinelli. ‘A Stochastic Analysis of Subcritical Euclidean Fermionic Field Theories'. arXiv, 26 October 2022. https://doi.org/10.48550/arXiv.2210.15047
Galeati, Lucio, and Massimiliano Gubinelli. ‘Mixing for Generic Rough Shear Flows'. ArXiv:2107.12115 [Math], 26 July 2021. http://arxiv.org/abs/2107.12115
Barashkov, Nikolay, and Massimiliano Gubinelli. ‘On the Variational Method for Euclidean Quantum Fields in Infinite Volume'. ArXiv:2112.05562 [Math-Ph], 9 December 2021. http://arxiv.org/abs/2112.05562
Galeati, L., Gubinelli, M., 2023+. Prevalence of ρ-Irregularity and Related Properties. arXiv:2004.00872 (accepted in Ann. I. H. P./P.S.)
Gubinelli, M., Koch, H., Oh, T., 2023. Paracontrolled Approach to the Three-Dimensional Stochastic Nonlinear Wave Equation with Quadratic Nonlinearity. J. Europ. Math. Soc., 27.
Albeverio, S., Borasi, L., De Vecchi, F. C., Gubinelli, M, 2022. Grassmannian Stochastic Analysis and the Stochastic Quantization of Euclidean Fermions. Probability Theory and Related Fields 183, no. 3: 909–95. https://doi.org/10.1007/s00440-022-01136-x
Gubinelli, M., Koch, H., Oh, T., Tolomeo, L., 2022. Global Dynamics for the Two-Dimensional Stochastic Nonlinear Wave Equations. International Mathematics Research Notices 2022, no. 21: 16954–99. https://doi.org/10.1093/imrn/rnab084
De Vecchi, F. C., Gubinelli, M., 2021. A Note on Supersymmetry and Stochastic Differential Equations. In Geometry and Invariance in Stochastic Dynamics, edited by Stefania Ugolini, Marco Fuhrman, Elisa Mastrogiacomo, Paola Morando, and Barbara Rüdiger, 71–87. Springer Proceedings in Mathematics & Statistics. Cham: Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-87432-2_5
Barashkov, N., Gubinelli, M., 2021. The Φ43 Measure via Girsanov's Theorem. Electronic Journal of Probability 26. https://doi.org/10.1214/21-EJP635
Galeati, L., Gubinelli, M., 2021. Noiseless Regularisation by Noise. Revista Matemática Iberoamericana. https://doi.org/10.4171/RMI/1280
Albeverio, S., De Vecchi, F.C., Gubinelli, M., 2021. The elliptic stochastic quantization of some two dimensional Euclidean QFTs. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 57, no. 4. https://doi.org/10.1214/20-AIHP1145
Gubinelli, M., Hofmanova, M., 2021. A PDE construction of the Euclidean Φ43 quantum field theory. Communications in Mathematical Physics. 10.1007/s00220-021-04022-0
Barashkov, N., Gubinelli, M., 2020. A variational method for \(\Phi^4_3\). Duke Mathematical Journal, 169(17):3339–3415. 10.1215/00127094-2020-0029
Gubinelli M., Turra, M., 2020. Hyperviscous Stochastic Navier-Stokes Equations with White Noise Invariant Measure in Two Dimensions. Stochastics and Dynamics, 2040005. https://doi.org/10.1142/S0219493720400055
Gubinelli, M., Perkowski, N., 2020. The Infinitesimal Generator of the Stochastic Burgers Equation. Probability Theory and Related Fields. https://doi.org/10.1007/s00440-020-00996-5
Albeverio, S., De Vecchi, F.C., Gubinelli, M., 2020. Elliptic stochastic quantization. Annals of Probability 48, no. 4: 1693–1741. https://doi.org/10.1214/19-AOP1404
Gubinelli, M., Souganidis, T., Tzvetkov, N., 2019. Singular Random Dynamics: Cetraro, Italy 2016, C.I.M.E. Foundation Subseries. Springer International Publishing. https://doi.org/10.1007/978-3-030-29545-5
Gubinelli, M., Hofmanová, M., 2019. Global Solutions to Elliptic and Parabolic Φ4 Models in Euclidean Space. Comm. in Mathematical Physics 368, 1201–1266. https://doi.org/10.1007/s00220-019-03398-4
Gubinelli, M., Ugurcan, B., Zachhuber, I., 2019. Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions. Stoch PDE: Anal Comp. https://doi.org/10.1007/s40072-019-00143-9
Furlan, M., Gubinelli, M., 2019. Paracontrolled quasilinear SPDEs. Ann. Probab. 47, 1096–1135. https://doi.org/10.1214/18-AOP1280
Furlan, M., Gubinelli, M., 2019. Weak universality for a class of 3d stochastic reaction-diffusion models. Probab. Theory Related Fields 173, 1099–1164. https://doi.org/10.1007/s00440-018-0849-6
Deya, A., Gubinelli, M., Hofmanová, M., Tindel, S., 2019. One-dimensional reflected rough differential equations. Stochastic Processes and their Applications 129, 3261–3281. https://doi.org/10.1016/j.spa.2018.09.007
Deya, A., Gubinelli, M., Hofmanová, M., Tindel, S., 2019. A priori estimates for rough PDEs with application to rough conservation laws. Journal of Functional Analysis 276, 3577–3645. https://doi.org/10.1016/j.jfa.2019.03.008
Beck, L., Flandoli, F., Gubinelli, M., Maurelli, M., 2019. Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness. Electron. J. Probab. 24, 1–72. https://doi.org/10.1214/19-EJP379
Gubinelli, M., Perkowski, N., 2018. Probabilistic Approach to the Stochastic Burgers Equation, in: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (Eds.), Stochastic Partial Differential Equations and Related Fields, Springer Proceedings in Mathematics & Statistics. Springer International Publishing, pp. 515–527.
Gubinelli, M., Perkowski, N., 2018. An Introduction to Singular SPDEs, in: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (Eds.), Stochastic Partial Differential Equations and Related Fields, Springer Proceedings in Mathematics & Statistics. Springer International Publishing, pp. 69–99.
Gubinelli, M., Perkowski, N., 2018. Energy solutions of KPZ are unique. J. Amer. Math. Soc. 31, 427–471. https://doi.org/10.1090/jams/889
Gubinelli, M., Koch, H., Oh, T., 2018. Renormalization of the two-dimensional stochastic nonlinear wave equations. Transactions of the American Mathematical Society 1. https://doi.org/10.1090/tran/7452
Gubinelli, M., 2018. A panorama of singular SPDEs, in: Proc. Int. Cong. of Math. pp. 2277–2304.
Gubinelli, M., Perkowski, N., 2017. KPZ Reloaded. Communications in Mathematical Physics 349, 165–269. https://doi.org/10.1007/s00220-016-2788-3
Diehl, J., Gubinelli, M., Perkowski, N., 2017. The Kardar–Parisi–Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions. Communications in Mathematical Physics 354, 549–589. https://doi.org/10.1007/s00220-017-2918-6
Bailleul, I., Gubinelli, M., 2017. Unbounded rough drivers. Annales de la Faculté des Sciences de Toulouse Mathématiques 26, 795–830. https://doi.org/10.5802/afst.1553
Gubinelli, M., Perkowski, N., 2016. The Hairer-Quastel universality result at stationarity, in: Stochastic Analysis on Large Scale Interacting Systems, RIMS Kôkyûroku Bessatsu, B59. Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 101–115.
Gubinelli, M., Imkeller, P., Perkowski, N., 2016. A Fourier analytic approach to pathwise stochastic integration. Electron. J. Probab. 21, Paper No. 2, 37. https://doi.org/10.1214/16-EJP3868
Gubinelli, M., 2016. Infinite Dimensional Rough Dynamics, in: The Abel Symposium. Springer, pp. 401–413.
Catellier, R., Gubinelli, M., 2016. Averaging along irregular curves and regularisation of ODEs. Stochastic Processes and their Applications 126, 2323–2366. https://doi.org/10.1016/j.spa.2016.02.002
Gubinelli, M., Perkowski, N., 2015. Lectures on singular stochastic PDEs, Ensaios Matemáticos [Mathematical Surveys]. Sociedade Brasileira de Matemática, Rio de Janeiro.
Gubinelli, M., Imkeller, P., Perkowski, N., 2015. Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, e6, 75. https://doi.org/10.1017/fmp.2015.2
Chouk, K., Gubinelli, M., 2015. Nonlinear PDEs with Modulated Dispersion I: Nonlinear Schrödinger Equations. Comm. Partial Differential Equations 40, 2047–2081.
Gubinelli, M., Hiroshima, F., Lörinczi, J., 2014. Ultraviolet renormalization of the Nelson Hamiltonian through functional integration. Journal of Functional Analysis 267, 3125–3153. https://doi.org/10.1016/j.jfa.2014.08.002
Van Der Hoeven, J., Grozin, A., Gubinelli, M., Lecerf, G., Poulain, F., Raux, D., 2013. GNU TeXmacs: a scientific editing platform. ACM Communications in Computer Algebra 47, 59–61.
Gubinelli, M., Jara, M., 2013. Regularization by noise and stochastic Burgers equations. Stoch. Partial Differ. Equ. Anal. Comput. 1, 325–350. https://doi.org/10.1007/s40072-013-0011-5
Brzeźniak, Z., Gubinelli, M., Neklyudov, M., 2013. Global solutions of the random vortex filament equation. Nonlinearity 26, 2499–2514. https://doi.org/10.1088/0951-7715/26/9/2499
Gubinelli, M., 2012. Rough solutions for the periodic Korteweg–de Vries equation. Commun. Pure Appl. Anal. 11, 709–733. https://doi.org/10.3934/cpaa.2012.11.709
Flandoli, F., Gubinelli, M., Priola, E., 2012. Remarks on the stochastic transport equation with Hölder drift. Rend. Semin. Mat. Univ. Politec. Torino 70, 53–73.
Deya, A., Gubinelli, M., Tindel, S., 2012. Non-linear rough heat equations. Probab. Theory Related Fields 153, 97–147. https://doi.org/10.1007/s00440-011-0341-z
Gubinelli, M., 2011. Abstract integration, combinatorics of trees and differential equations, in: Combinatorics and Physics, Contemp. Math. Amer. Math. Soc., Providence, RI, pp. 135–151.
Flandoli, F., Gubinelli, M., Priola, E., 2011. Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations. Stochastic Process. Appl. 121, 1445–1463. https://doi.org/10.1016/j.spa.2011.03.004
Gubinelli, M., Tindel, S., 2010. Rough evolution equations. Ann. Probab. 38, 1–75. https://doi.org/10.1214/08-AOP437
Gubinelli, M., 2010. Ramification of rough paths. J. Differential Equations 248, 693–721. https://doi.org/10.1016/j.jde.2009.11.015
Flandoli, Franco, Gubinelli, M., Priola, E., 2010. Does noise improve well-posedness of fluid dynamic equations?, in: Stochastic Partial Differential Equations and Applications, Quad. Mat. Dept. Math., Seconda Univ. Napoli, Caserta, pp. 139–155.
Flandoli, F., Gubinelli, M., Priola, E., 2010. Flow of diffeomorphisms for SDEs with unbounded Hölder continuous drift. Bull. Sci. Math. 134, 405–422. https://doi.org/10.1016/j.bulsci.2010.02.003
Flandoli, F., Gubinelli, M., Priola, E., 2010. Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180, 1–53. https://doi.org/10.1007/s00222-009-0224-4
Caravenna, F., Giacomin, G., Gubinelli, M., 2010. Large scale behavior of semiflexible heteropolymers. Ann. Inst. Henri Poincaré Probab. Stat. 46, 97–118. https://doi.org/10.1214/08-AIHP310
Gubinelli, M., Lörinczi, J., 2009. Gibbs measures on Brownian currents. Comm. Pure Appl. Math. 62, 1–56. https://doi.org/10.1002/cpa.20260
Flandoli, F., Gubinelli, M., Russo, F., 2009. On the regularity of stochastic currents, fractional Brownian motion and applications to a turbulence model. Ann. Inst. Henri Poincaré Probab. Stat. 45, 545–576. https://doi.org/10.1214/08-AIHP174
Flandoli, F., Gubinelli, M., Hairer, M., Romito, M., 2008. Rigorous remarks about scaling laws in turbulent fluids. Comm. Math. Phys. 278, 1–29. https://doi.org/10.1007/s00220-007-0398-9
Berselli, L.C., Gubinelli, M., 2007. On the global evolution of vortex filaments, blobs, and small loops in 3D ideal flows. Comm. Math. Phys. 269, 693–713. https://doi.org/10.1007/s00220-006-0142-x
Gubinelli, M., Lejay, A., Tindel, S., 2006. Young integrals and SPDEs. Potential Anal. 25, 307–326. https://doi.org/10.1007/s11118-006-9013-5
Gubinelli, Massimiliano, 2006. Rooted trees for 3D Navier-Stokes equation. Dyn. Partial Differ. Equ. 3, 161–172. https://doi.org/10.4310/DPDE.2006.v3.n2.a3
Gubinelli, M., 2006. Gibbs measures for self-interacting Wiener paths. Markov Process. Related Fields 12, 747–766.
Caravenna, F., Giacomin, G., Gubinelli, M., 2006. A numerical approach to copolymers at selective interfaces. J. Stat. Phys. 122, 799–832. https://doi.org/10.1007/s10955-005-8081-z
Flandoli, Franco, Gubinelli, M., Giaquinta, M., Tortorelli, V.M., 2005. Stochastic currents. Stochastic Process. Appl. 115, 1583–1601. https://doi.org/10.1016/j.spa.2005.04.007
Flandoli, F., Gubinelli, M., 2005. Statistics of a vortex filament model. Electron. J. Probab. 10, no. 25, 865–900 (electronic). https://doi.org/10.1214/EJP.v10-267
Caracciolo, S., Gambassi, A., Gubinelli, M., Pelissetto, A., 2005. Critical Behavior of the Two-Dimensional Randomly Driven Lattice Gas. Phys. Rev E 72.
Bessaih, H., Gubinelli, M., Russo, F., 2005. The evolution of a random vortex filament. Ann. Probab. 33, 1825–1855. https://doi.org/10.1214/009117905000000323
Gubinelli, M., 2004. Controlling rough paths. J. Funct. Anal. 216, 86–140. https://doi.org/10.1016/j.jfa.2004.01.002
Flandoli, F., Gubinelli, M., 2004. Random currents and probabilistic models of vortex filaments, in: Seminar on Stochastic Analysis, Random Fields and Applications IV, Progr. Probab. Birkhäuser, Basel, pp. 129–139.
Caracciolo, S., Gambassi, A., Gubinelli, M., Pelissetto, A., 2004. Reply to: “Comment on: ‘Transverse fluctuations in the driven lattice gas'\,” [J. Phys. A 37 (2004), no. 33, 8189–8191] by E. V. Albano. J. Phys. A 37, 8193–8195. https://doi.org/10.1088/0305-4470/37/33/N02
Caracciolo, S., Gambassi, A., Gubinelli, M., Pelissetto, A., 2004. Finite-size scaling in the driven lattice gas. Journal of Statistical Physics 115, 281–322.
Caracciolo, S., Gambassi, A., Gubinelli, M., Pelissetto, A., 2004. Comment on “Dynamic Behavior of Anisotropic Nonequilibrium Driving Lattice Gases.” Physical review letters 92, 29601.
Caracciolo, Sergio, Gambassi, A., Gubinelli, M., Pelissetto, A., 2003. Transverse fluctuations in the driven lattice gas. J. Phys. A 36, L315–L320. https://doi.org/10.1088/0305-4470/36/21/101
Caracciolo, Sergio, Gambassi, A., Gubinelli, M., Pelissetto, A., 2003. Shape dependence of the finite-size scaling limit in a strongly anisotropic O(∞) model. European Physical Journal B 34, 205–217.
Flandoli, F., Gubinelli, M., 2002. The Gibbs ensemble of a vortex filament. Probab. Theory Related Fields 122, 317–340. https://doi.org/10.1007/s004400100163
Caracciolo, Sergio, Gambassi, A., Gubinelli, M., Pelissetto, A., 2001. Finite-Size Critical Behavior of the Driven Lattice Gas. Arxiv preprint cond-mat/0106221.
Caracciolo, S., Gambassi, A., Gubinelli, M., Pelissetto, A., 2001. Finite-Size Correlation Length and Violations of Finite-Size Scaling. Eur. Phys. J. B 20.
Gubinelli, M., Sorel, M., Tonet, O., Atac, M., Mishina, M., Valles, J., 1998. Measurement of the rate capabilities of SSPMs. Nucl. Instr. and Meth. A.
Cass, T.R., Friz, P.K., Gubinelli, M., 2016. Rough Paths, Regularity Structures and Related Topics. Oberwolfach Reports 13, 1319–1406.
Crisan, D., Friz, P.K., Gubinelli, M., 2012. Rough Paths and PDEs. Oberwolfach Reports 9, 2493–2540.
Gubinelli, M., van der Hoeven, J., Poulain, F., Raux, D., 2014. GNU TeXmacs towards a Scientific Office Suite, in: International Congress on Mathematical Software. Springer Berlin Heidelberg, pp. 562–569.
Giordano, S., Gubinelli, M., Pagano, M., 2009. Efficient Simulation of Overflow Probability for Gaussian Processes, in: CCM 2009.
Amorena, M., Barsanti, M., Gubinelli, M., Vitali, M., 2008. Monte Carlo simulation of tests for the determination of gear design allowable stresses, in: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection, pp. 31–37.
Giordano, S., Gubinelli, M., Pagano, M., 2007. Rare events of Gaussian processes: a performance comparison between bridge Monte-Carlo and importance sampling, in: International Conference on Next Generation Wired/Wireless Networking. Springer Berlin Heidelberg, pp. 269–280.
Giordano, S., Gubinelli, M., Pagano, M., 2006. Estimation of Rare Events in Gaussian Processes using Bridges, in: RESIM 2006. pp. 182–183.
Giordano, S., Gubinelli, M., Pagano, M., 2006. Efficiency of the Bridge Monte Carlo method for Rare Events of Gaussian Processes, in: PTAP 2006. pp. 83–85.
Giordano, S., Gubinelli, M., Pagano, M., 2005. Bridge Monte-Carlo: a novel approach to rare events of Gaussian processes, in: Proceedings of the Fifth Workshop on Simulation, St. Petersburg.
Giordano, S., Gubinelli, M., Pagano, M., 2004. Efficient estimation of Gaussian Overflow probabilities without Importance Sampling, in: RESIM COP 04.
Gini, F., Greco, M., Farina, A., Gubinelli, M., 2004. Asymptotic Maximum Likelihood Estimation of Multiple Radar Targets, in: Proceedings of IEEE Radar Conference 2003, Huntsville, Alabama, USA.
Amorena, M., Barsanti, M., Gubinelli, M., Guzzo, F., Manfredi, E., Plancher, M., Vitali, M., 2003. Controllo e diagnostica di un sistema di prova ingranaggi per applicazioni aeronautiche, in: Atti Del XXXII Congresso AIAS, Salerno. pp. 3–6.
Gubinelli, M., Tindel, S., Torrecilla, I., 2014. Controlled viscosity solutions of fully nonlinear rough PDEs. arXiv:1403.2832
Chouk, K., Gubinelli, M., 2014. Rough sheets. arXiv:1406.7748
Chouk, K., Gubinelli, M., 2014. Nonlinear PDEs with modulated dispersion II: Korteweg–de Vries equation. arXiv:1406.7675
Flandoli, Franco, Giaquinta, M., Gubinelli, M., Tortorelli, V.M., 2002. On a relation between stochastic integration and geometric measure theory. arXiv:math/0211458 (partly unpublished)