[main] [research] [bernoulli]mg|pages

Maurelli - Regularisation by noise

The lectures of Mario Maurelli at the second workshop of the Bernoulli Center Program “New developments and challenges in Stochastic Partial Differential Equations”


Maurelli | Regularisation by noise | Lecture 1 | Monday July 22, 9:00–10:30

Joint work with Bagnara, Galeati.

I. Introduction

Regularisation by noise (RbN): possibly ill-posed ODE/PDE becomes well-posed or gains regularity by addition of a suitable noise.

Motivations: 1) surprising phenomenon (things become better adding noise); 2) noise may model disorder at small scales; 3) better understanding of properties of noise.

Main aim: show regularisation effect for 2d Euler with unbounded vorticity by non-smooth Kraichnan noise.

Plan: (today) II. Regularisation by noise, for ODE/linear PDEs; III. Kraichnan noise; (Lecture 2) IV. 2d Euler equation; V. Regularisation by noise of 2D Euler; (Lecture 3) VI. Further properties and results on reg. by Kraichnan.

II. RbN for ODEs and linear PDEs.

1. ODEs

ODE on \([0, T] \times \mathbb{R}^d\):

\(\displaystyle \dot{X} (t) = b (t, X (t)), X (0) = x_0 .\)

Counterexample for non-Lipshitz \(b\):

\(\displaystyle b (x) = | x |^{\alpha} \frac{x}{| x |} \mathbb{1}_{| x | \neq 0}, \qquad \alpha < 1, \qquad x_0 = 0.\)

with multiple solutions:

\(\displaystyle X (t) = c_{\alpha} (t - t_0)^{1 / (1 - \alpha)} \mathbb{1}_{t > t_0} v, \qquad v \in \mathbb{S}^{d - 1}, \qquad \forall t_0 \in [0, \infty] . \) (1)

SDE on \([0, T] \times \mathbb{R}^d\):

\(\displaystyle \mathrm{d} X_t = b (t, X_t) \mathrm{d} t + \mathrm{d} W_t, \qquad X_0 = x_0\)

where \(b : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}^d\) given, \(W\) \(d\)-dim Bronwian motion.

Literature: Zwokin '74, Veretennikov '80, Krylov-Röckner 2005, Flandoli–Gubinelli–Priola 2010, Catellier–Gubinelli 2016.

Theorem. (Krylov-Röckner) \(b \in L^q_t L^p_x\) \(p, q \in (2, + \infty)\) \(2 / q + d / p < 1\) imples strong existence and pathwise uniqueness for all \(x_0 \in \mathbb{R}^d\).

Under the same conditions, there exists also a stochastic flow of homeomeorphisms. \((t, x_0) \mapsto X_t^{x_0, \omega}\), i.e. a modification of this map which is a flow of homeomorphisms for \(\mathbb{P}\)-a.e. \(\omega \in \Omega\).

Intuition on the mechanism of regularisation: the noise is “much stronger” than the drift. An heuristic computation:

\(\displaystyle \mathrm{d} X_t = | X_t |^{\alpha} \frac{X_t}{| X_t |} \mathrm{d} t + \mathrm{d} W_t, \qquad X_0 = 0.\)

Drift contribution is given by (1), i.e. \(\mathrm{d} Y_t = | Y_t |^{\alpha} \frac{Y_t}{| Y_t |} \mathrm{d} t\) so \(| Y_t | \lesssim t^{1 / (1 - \alpha)}\) while \(| W_t | \approx t^{1 / 2}\) so

\(\displaystyle | Y_t | \ll | W_t | \Leftrightarrow (1 - \alpha)^{- 1} > 1 / 2, \Leftrightarrow \alpha > - 1 \Leftrightarrow | x |^{\alpha} \frac{x}{| x |} \in L^p\)

with \(p > d\) (the Krylov-Röckner condition)

2. Stochastic continuity/transport equations

Deterministic case (formally). Consider the ODE

\(\displaystyle \left\{ \begin{array}{l} \dot{X}^{x_0}_t = b (t, X^{x_0}_t)\\ \dot{X}^{x_0}_0 = x_0 \end{array} \right.\)

with a corresponding flow of homeo/diffeomorphisms \((t, x) \mapsto X_t^x\).

Continuity equation (\(\operatorname{div}b = 0\)) :

\(\displaystyle \partial_t \mu +\operatorname{div} (b \mu) = 0 \qquad \text{on $[0, T] \times \mathbb{R}^d$}\)

\(\mu = \mu (t, x)\), with \(\mu (t, x) \mathrm{d} x = \mu (t, \mathrm{d} x)\). Equation for the evolution of the mass associated with the ODE given an initial mass \(\mu_0\). The mass \(\mu (t)\) at time \(t\) will be given by \(\mu (t) = (X_t)_{\#} \mu_0\) where \(X_t : \mathbb{R}^d \rightarrow \mathbb{R}^d\) is the map sending initial conditions to the position of particles at time \(t\).

For all test functions \(\varphi \in C^{\infty}_c\), by the chain rule

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \mu_t (\varphi) = \frac{\mathrm{d}}{\mathrm{d} t} \mu_0 (\varphi \circ X_t) = \mu_0 ((b (t, \cdot) \nabla \varphi) \circ X_t) = \mu_t (b (t, \cdot) \nabla \varphi)\)

which is the distributional form of the continuity equation.

Transport equation:

\(\displaystyle \partial_t \theta + b \cdot \nabla \theta = 0,\)

the evolution of a passive scalar advected with the ODE. This is equivalent to the continuity equation in the case where \(\operatorname{div}b = 0\). Note that \(\theta\) is constant along the characteristics: \(\theta (t, X^x_t) = \theta (0, x)\) for all \(t \geqslant 0\).

Stochastic case:

\(\displaystyle \left\{ \begin{array}{l} \mathrm{d} X_t^x = b (t, X^x) \mathrm{d} t + \sum_a \sigma_a (t, X^x) \mathrm{d} W_t^a, \qquad t \geqslant 0\\ X_0^x = x \end{array} \right.\)

For amost all \(\omega \in \Omega\), \(X_t : \mathbb{R}^d \rightarrow \mathbb{R}^d\), it gives rise to a stochastic flow of homeo/diffeos: random evolution of particles. Letting \(\mu (t) = (X_t)_{\#} \mu_0\) we get the stochastic continuity equation:

\(\displaystyle \mathrm{d} \mu +\operatorname{div} (b \mu) \mathrm{d} t + \sum_a \operatorname{div} (\sigma_a \mu) \circ \mathrm{d} W^a = 0, \qquad \mu = \mu (t, x, \omega)\)

it expresses the random evolution of mass \(\mu_t^{\omega}\) associated with the SDE. Analogously we have the stochastic transport equation:

\(\displaystyle \mathrm{d} \theta + b \cdot \nabla \theta \mathrm{d} t + \sum_a \sigma_a \cdot \nabla \theta \circ \mathrm{d} W^a = 0,\)

expressing the random evolution of a passive scalar.

How do we prove these properties: test with test function and Ito formula for the Stratonovich integration (which is a first order expression), there is a corresponding Ito form of the equations but it involves second derivatives of the solution.

3. RbN for linear stochastic transport equation

\(\displaystyle \mathrm{d} \theta + b \cdot \nabla \theta \mathrm{d} t + \sum_{a = 1}^d \nabla_a \theta \circ \mathrm{d} W^a = 0,\)

where \(W\) is a \(d\)-dimensional Brownian motion.

Theorem. (Flandoli–Gubinelli–Priola 2010) \(b \in L^{\infty}_t (C^{0 +}_{x, \operatorname{bounded}})\), \(\operatorname{div}b \in L^{2 +}_{t, x}\) then there exists strong and pathwise unique transport equation in \(L^{\infty}_{t, x}\) for all \(\theta_0 \in L^{\infty}_x\).

The strategy of proof uses the diffeomorphic flow of characteristics. Uniqueness follows from the relation \(\theta (t, X^x_t) = \theta (0, x)\).

III. Non-smooth Kraichnan model of passive scalars

1. Isotropic structure of noise

\(\dot{W}\) random velocity on \([0, T] \times \mathbb{R}^d\) field: Gaussian, centered, white in time and isotropic (i.e. translation and rotation invariant) in space and divergence free:

\(\displaystyle \mathbb{E} [\dot{W} (t, x) \dot{W} (s, y)] = \delta (t - s) Q (x, y),\)

where the covariance is translation invariant:

\(\displaystyle Q (x, y) = Q (x - y)\)

with Fourier transform

\(\displaystyle \hat{Q} (\xi) = \langle \xi \rangle^{- d - 2 \alpha} \underbrace{\left( \mathbb{I}- \frac{\xi \xi^T}{| \xi |^2} \right)}_{\text{Leray projection giving div$\dot{V}$=0}}\)

with \(\langle \xi \rangle = (1 + | \xi |^2)^{1 / 2}\) and \(\alpha \in (0, 1)\) (non-smooth regime). Fact: \(Q\) satisfies:

\(\displaystyle Q (G z) = G Q (z) G^T\)

for all \(G \in O (d)\). This implies that the law of \(\dot{W} (t, x)\) is translation invariant and invariant under orthogonal transformation.

Structure of \(Q\): due to the symmetries, it decomposes into parallel and orthogonal tensors (to \(x\)).

\(\displaystyle Q (x) = Q_L (x) \frac{x x^T}{| x |^2} + Q_N (x) \left( \mathbb{I}+ \frac{x x^T}{| x |^2} \right),\)

with scalar quantities \(Q_L (x) = Q_L (| x |) = Q_{i i} (| x | e_i)\), the logitudinal component and \(Q_N (x) = Q_N (| x |) = Q_{i i} (| x | e_j)\) (with \(i \neq j\)), the orthogonal component (see the book of Baxendale–Harris).

2. Kraichnan passive scalar model

Model of stochastic transport/continuity equation with no-drift and noise \(W\)

\(\displaystyle \mathrm{d} \mu +\operatorname{div} (\mu \circ \mathrm{d} W) = 0\)

on \([0, T] \times \mathbb{R}^d\) with \(d \geqslant 2\). We can represent the noise as an infinite series of Brownian contributions:

\(\displaystyle W (t, x) = \sum_{k = 1}^{\infty} \sigma_k (x) \mathrm{d} B^k_t,\)

with \((B^k)_k\) i.i.d. Brownian motions and \((\sigma_k (x))_k\) appropriate vector fields. In this case we have

\(\displaystyle \mathrm{d} \mu + \sum_{k = 1}^{\infty} \operatorname{div} (\sigma_k \mu) \circ \mathrm{d} B^k = 0.\)

Lagrangian viewpoint: SDE

\(\displaystyle \left\{ \begin{array}{l} \mathrm{d} X_t^x = \sum_k \sigma_k (t, X^x) \circ \mathrm{d} B_t^k = \circ \mathrm{d} W (t, X^x_t) \xequal[\operatorname{div}W = 0]{} \mathrm{d} W (t, X^x_t), \qquad t \geqslant 0,\\ X_0^x = x. \end{array} \right.\)

Feature of this model (rigorously for \(\alpha > 1\) where \(\dot{W}\) is \(C^1\) in space). Using the divergence

1. The one point motion \(X^x_t\) is actually just a \(d\)-dimensional Brownian motion. \((X^x_t)_t\) is a martingale and

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} [X^x]_t = \sum_k \sigma_k (X^x_t) \sigma_k (X^x_t) = Q (0) = c\mathbb{I}.\)

2. The two point motion (Baxendale–Harris in the smooth case). Closed SDE for the difference \(V = X^x - X^y\) of two points. \(V\) is a martingale and

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} [V]_t = \sum_k [\sigma_k (X^x_t) - \sigma_k (X^y_t)] [\sigma_k (X^x_t) - \sigma_k (X^y_t)]\)
\(\displaystyle = 2 Q (0) - 2 Q (X^x_t - X^y_t) = 2 Q (0) - 2 Q (V_t)\)

so \(V\) satisfies in law the following SDE:

\(\displaystyle \mathrm{d} V = g (V) \mathrm{d} B\)

where \(B\) is a \(d\)-dimensional Brownian motion and \(g : \mathbb{R}^d \rightarrow \mathbb{R}^d \times \mathbb{R}^d\) such that \(g (x)^2 = 2 Q (0) - 2 Q (x)\), and

\(\displaystyle g (x) = [2 (Q_L (0) - Q_L (| x |))]^{1 / 2} \frac{x x^T}{| x |^2} + [2 (Q_N (0) - Q_N (| x |))]^{1 / 2} \left( \mathbb{I}- \frac{x x^T}{| x |^2} \right)\)


Maurelli | Regularisation by noise | Lecture 2 | Thursday July 25, 11:00–12:30

Recall the setting:

Noise

Gaussian, divergence free, centered

\(\displaystyle \mathbb{E} [\dot{W} (t, x) \dot{W} (s, y)] = \delta (t - s) Q (x - y)\)

with

\(\displaystyle \hat{Q} (n) = \langle n \rangle^{- d - 2 \alpha} \left( \mathbb{I}- \frac{n n^T}{| n |^2} \right), \qquad W (t, x) = \sum_k \sigma_k (x) W^k (t)\)

\(\alpha > 1\) the noise is \(C^1\) in space, and \(\alpha \in (0, 1)\) where the noise is \(C^{\alpha -}\) in space. Isotropic structure

\(\displaystyle Q (x) \quad = \quad \underbrace{Q_L (| x |) \frac{x x^T}{| x |^2}}_{\text{longitudinal component}} \quad + \quad \underbrace{Q_N (| x |) \left( \mathbb{I}- \frac{x x^T}{| x |^2} \right)}_{\text{normal component}}\)

Kraichnan model of passive scalar

(Kraichnan 1968)

\(\displaystyle \mathrm{d} \mu +\operatorname{div} (\mu \circ \mathrm{d} W) = 0,\)

with noise \(W\) as above.

Lagrangian viewpoint: (formally since the vectorfields are not necessarily smooth)

\(\displaystyle \mathrm{d} X^x_t = \circ \mathrm{d} W_t (t, X^x_t) = \sum_k \sigma_k (X^x_t) \circ \mathrm{d} W^k_t, \qquad X^x_t = x.\)

And \(\mu\) represent the motion of the mass of an ensemble of particle following this dynamics.

\(\displaystyle \mu^{\omega}_t (x) \mathrm{d} x = \mu^{\omega}_t (\mathrm{d} x) = (X^{\omega}_t)_{\#} \mu_0 .\)

Closed equation for \(V = X^x - X^y\), in law (in Ito sense)

\(\displaystyle \mathrm{d} V = \sqrt{2} (Q (0) - Q (V))^{1 / 2} \mathrm{d} B\)

where \(B\) is a \(d\)-dimensional BM. Closed \(1 d\) SDE for the distance \(| V | = | X^x - X^y |\), by Ito formula

\(\displaystyle \mathrm{d} | V | = \frac{V}{| V |} \sqrt{2} (Q (0) - Q (V))^{1 / 2} \mathrm{d} B + \frac{d - 1}{| V |} (Q_N (0) - Q_N (| V |)) \mathrm{d} t\)
\(\displaystyle d [| V |]_t = \frac{V}{| V |} g (V) g (V)^T \frac{V^T}{| V |} \mathrm{d} t = 2 (Q_L (0) - Q_L (| V |)) \mathrm{d} t\)

so in the end we have that \(| V |\) is a one dimensional diffusion with generator \(A\) and satisfying the SDE:

\(\displaystyle \mathrm{d} | V | = \sqrt{(2 (Q_L (0) - Q_L (| V |)))} \mathrm{d} \tilde{B} + \frac{d - 1}{| V |} (Q_N (0) - Q_N (| V |)) \mathrm{d} t.\)

Eulerian counterpart of this computation: we have

\(\displaystyle \int \int \varphi (| X^x_t - X^y_t |) \mu_0 (\mathrm{d} x) \mu_0 (\mathrm{d} y) = \int \int \varphi (| x - y |) \mu_t (\mathrm{d} x) \mu_t (\mathrm{d} y)\)

and therefore

\(\displaystyle \mathrm{d} \int \int \varphi (| x - y |) \mu_t (\mathrm{d} x) \mu_t (\mathrm{d} y) = \int \int A \varphi (| x - y |) \mu_t (\mathrm{d} x) \mu_t (\mathrm{d} y) \mathrm{d} t + \mathrm{d} \text{(local martingale)} .\)

III. Nonsmooth Kraichnan model \((\alpha \in (0, 1))\)

Form of \(Q\). As a consequence of the formula

\(\displaystyle \hat{Q} (n) = \langle n \rangle^{- d - 2 \alpha} \left( \mathbb{I}- \frac{n n^T}{| n |^2} \right)\)

we have (see e.g. Le Jan–Raimond 2002)

\(\displaystyle Q_L (0) - Q_L (| x |) = \beta_L | x |^{2 \alpha} + O_{| x | \ll 1} (| x |^2)\)
\(\displaystyle Q_N (0) - Q_N (| x |) = \beta_N | x |^{2 \alpha} + O_{| x | \ll 1} (| x |^2)\)

We have \(\beta_L, \beta_N\) and we have

\(\displaystyle \beta_N = \left( 1 + \frac{2 \alpha}{d - 1} \right) \beta_L\)

by the divergence free condition.

Main features of the non-smooth Kraichnan model.

1) Spontaneous stochasticity / particle splitting (Bernard–Gawedzi–Kupiainen 1998)

In the self-similar case, i.e. forgetting the full form of \(Q\) and keeping only the leading term. Heuristically, if we start \(\mu_0 = \delta_x\) in the smooth case we have \(\mu_t = \delta_{X^x_t}\), however in the non-smooth case \(\mu_t\) becomes diffuse immediately for \(t > 0\). Unexpected for a continuity equation. “Formal proof”:

\(\displaystyle \mathrm{d} | V | = (d - 1) \beta_N | V |^{2 \alpha - 1} \mathrm{d} t + \sqrt{2 \beta_L | V |^{2 \alpha}} \mathrm{d} B_t\)

and

\(\displaystyle \delta | V |^{1 - 2 \alpha} = (1 - \alpha) (d - 1 + \alpha) \beta_L \frac{1}{| V |^{1 - \alpha}} \mathrm{d} t + (1 - \alpha) \sqrt{2 \beta_L} \mathrm{d} B_t\)

and this is a Bessel process of dimension \(d / (1 - \alpha) > 2\). Therefore if \(V_0 = 0\) then \(V_t > 0\) for all \(t > 0\) (i.e. there exists a solution which exits from \(0\)).

2) Wellposedness of the Eulerian model (from Le Jan–Raimond 2002)

Let's transform the equation in Ito form

\(\displaystyle \mathrm{d} \mu +\operatorname{div} (\mu \mathrm{d} W) = \frac{c}{2} \Delta \mu \mathrm{d} t\)

with \(c I = Q (0)\).

Theorem. (LJ-R) There exists a unique solution adapted to the Brownian filtration in the class \(L^{\infty}_{t, \omega} L_x^2\).

The proof goes via Wiener chaos decomposition, proving that the various projections are well-posed.

Let's make connection with the two-point motion.

Define \((X^x, X^y)\) as a weak solution to the two-point motion equation which is well defined as long as \(x \neq y\). Then

\(\displaystyle \int \int \operatorname{Law} ((X^x, X^y) |W) \mu_0 (\mathrm{d} x) \mu_0 (\mathrm{d} y) = (\mu_t \otimes \mu_t)\)

and the SDE for \(| V | = | X^x - X^y |\) holds rigorously and in particular there is spontaneous stochasticity.

There exists a unique selection of mass evolution which exhibiths splitting.

3) Anomalous regularisation of the two-point motion \((X^x, X^y)\)

Eyink–Xin (1996+), Hakulinen 2003 : regularisation properties for the two-point motion.

4) Anomalous dissipation of the \(L^2\)-norm

qualitative Eyink–Drivas 2017, quantitative Rowan 2023+.

IV. 2d Euler Equation

1. Deterministic

\(\displaystyle \left\{ \begin{array}{l} \partial_t \theta + u \cdot \nabla \theta = 0\\ u = K \ast \theta \end{array} \right.\)

with vorticity field \(\theta : [0, T] \times \mathbb{R}^2 \rightarrow \mathbb{R}\), velocity field \(u : [0, T] \times \mathbb{R}^2 \rightarrow \mathbb{R}^2\), \(\theta =\operatorname{curl}u \Leftrightarrow u = K \ast \theta\),

\(\displaystyle K (x) = \frac{x^{\perp}}{| x |^2} = \nabla^{\perp} G (x), \qquad G (x) = - \log | x | .\)

Features: transport/continuity equation with divergence-free velocity field; non-linear, non-local; singular for “mass concentration”, \(K\) is singular in \(0\);

\(\displaystyle \theta \in L^p, p \in (1, \infty) \Rightarrow G \ast \theta \in W^{2, p} \Rightarrow u \in W^{1, p} .\)

Formally conserved quantities: 1) \(L^p\) norms of \(\theta\). \(p = 2\) this is the enstrophy. 2) the \(\dot{H}^{- 1}\) norm of \(\theta\), i.e. \(L^2\) norm of \(u\):

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \| \theta \|^2_{\dot{H}^{- 1}} = \frac{\mathrm{d}}{\mathrm{d} t} \langle \theta, G \ast \theta \rangle = 2 \int \theta (\nabla^{\perp} G \ast \theta) \cdot (\nabla G \ast \theta) \mathrm{d} x = 0.\)

Results:

V. Regularisation by nonsmooth Kraichnan noise for 2d Euler

We consider 2d Euler + non-smooth Kraichnan isotropic noise \(W\) of index \(\alpha \in (0, 1)\):

\(\displaystyle \mathrm{d} \theta + u \cdot \nabla \theta + \nabla \theta \circ \mathrm{d} W = 0, \qquad u = K \ast \theta .\)

Theorem. (Coghi-Maurelli 2023+) Existence of \(\dot{H}^{- 1}\) solutions. For \(\alpha \in (0, 1)\) and \(\omega_0 \in \dot{H}^{- 1}\) then there exists probabilistically weak solutions \(\theta \in L^{\infty}_t \dot{H}^{- 1}_x \cap C_t (H^{- 4})\) \(\mathbb{P}- a.s\) satisfying in addition

\(\displaystyle \theta \in L^2_{t, \omega} (\dot{H}^{- \alpha}_x) .\)

There is an anomalous regularisation of the solutions which live for almost every time and almost surely in \(\dot{H}^{- \alpha}_x\).

Theorem. (Coghi-Maurelli 2023+) Uniqueness in \(L^p\). For \(\theta \in L^p \cap L^1 \cap \dot{H}^{- 1}\) and

\(\displaystyle \frac{3}{2} < p < \infty, \qquad 0 \vee \left( \frac{2}{p} - 1 \right) < \alpha < \frac{1}{2} \wedge \left( 1 - \frac{1}{p} \right)\)

then there is pathwise uniqueness (and strong existence) in \(L^{\infty}_{t, \omega} (L^p_x \cap L^1_x) \cap L^{\infty}_t L^2_{\omega} \dot{H}^{- 1}_x \cap L^2_{t, \omega} (\dot{H}^{- \alpha})\).


[end of second lecture]

Maurelli | Regularisation by noise | Lecture 3 | Friday July 26, 9:00–10:30

V. Reg. by nonsmooth Kraichnan nois for 2d Euler

Recall the equation

\(\displaystyle \mathrm{d} \theta + u \cdot \nabla \theta + \nabla \theta \circ \mathrm{d} W = 0, \qquad u = K \ast \theta . \) (2)

with a Kraichnan isotropic noise of index \(\alpha \in (0, 1)\). Let's talk about motivations for the noise:

Lagrangian counterpart of the SPDE:

\(\displaystyle \mathrm{d} X^x_t = \int K (X^x_t - X^y_t) \omega_0 (\mathrm{d} y) \mathrm{d} t + \circ \mathrm{d} W (t, X^x_t)\)

if we add just a constant (or smooth) noise \(+ \mathrm{d} B\), we can remove it via a Galileian transformation and should not have hope to regularise the equation. In order to hope to have some regularisation we need some noise which has a substantial effect when \(| X^x_t - X^y_t | \ll 1\) which is the region where the Biot–Savart kernel is singular.

\(\displaystyle \| \theta \|_{\dot{H}^{- s}}^2 := \int | n |^{- 2 s} | \hat{\theta} (n) | \mathrm{d} n\)

Definition. \(\theta\) is an \(\dot{H}^{- 1}\) solution to the equation (2), there exists a \((\mathcal{F}_t)_t\)-progressively measurable \(\theta \in L^{\infty}_t (\dot{H}^{- 1}_x) \cap C_t (H_x^{- 4})\) \(\mathbb{P}- a.s.\) and

\(\displaystyle \theta_t = \theta_0 - \int_0^t \underbrace{(K \ast \theta_r) \cdot \nabla \theta_r}_{=\operatorname{curl}\operatorname{div} (u_r u_r^{\mathrm{T}})} \mathrm{d} r - \int_0^t \nabla \omega_r \cdot \mathrm{d} W_r + \int_0^t \frac{c}{2} \Delta \theta_r \mathrm{d} r.\)

The basic results we would like to discuss are the following about existence and uniqueness

Theorem 1. \((\exists)\) \(\alpha \in (0, 1)\), \(\theta_0 \in \dot{H}^{- 1}\) then \(\exists \theta\) \(\dot{H}^{- 1}\) solution to the equation (2) such that

\(\displaystyle \theta \in L^2_{x, t} (\dot{H}^{- \alpha}_x) .\)

Theorem 2. \((!)\) \(\) For \(\theta \in L^p \cap L^1 \cap \dot{H}^{- 1}\) and

\(\displaystyle \frac{3}{2} < p < \infty, \qquad 0 \vee \left( \frac{2}{p} - 1 \right) < \alpha < \frac{1}{2} \wedge \left( 1 - \frac{1}{p} \right)\)

then there exists a unique strong solution in \(L^{\infty}_{t, \omega} (L^p_x \cap L^1_x)\).

Galeati–Luo (2023+) weak uniqueness for log-Euler 2d via Girsanov's theorem (a nice paper)

Let's discuss the proofs now.

Step 1. Anomalous regularisation in negative Sobolev for Kraichnan

Consider

\(\displaystyle \mathrm{d} \mu +\operatorname{div} (\mu \mathrm{d} W) = \frac{c}{2} \Delta \mu, \qquad \operatorname{on} [0, T] \times \mathbb{R}^2\)

Idea: particle splitting brings anomalous regularisation in negative Sobolev spaces. Formally, two particular \(X^x\) and \(X^y\) if \(x \rightarrow y\) we still have that \(X^x_t \neq X^y_t\) for positive times, and it is reasonable to expect that \(\left| X^x_t {- X^y_t} \right|^{- 1}\) should get smaller on average, and so gain integrability in space.

This can be verified by using the explicit SDE satisfied by \(\left| X^x_t {- X^y_t} \right|\). In the Eulerian picture

\(\displaystyle \int \int \varphi (x - y) \mu_t (\mathrm{d} x) \mu_t (\mathrm{d} y) = \int \int \varphi (X^x_t - X^y_t) \mu_0 (\mathrm{d} x) \mu_0 (\mathrm{d} y)\)

and we take \(\varphi (x - y) = \log | x - y |^{- 1} = G (x - y)\). Applying Ito formula:

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \mathbb{E} [\langle G \ast \mu, \mu \rangle] =\mathbb{E} [\langle \operatorname{Tr} [Q (0) \mathrm{D}^2 \mu], G \ast \mu \rangle] +\mathbb{E} \left[ \sum_k \langle \sigma_k \cdot \nabla \mu {,} G \ast (\sigma_k \cdot \nabla \mu) \rangle \right]\)
\(\displaystyle =\mathbb{E} [\langle \operatorname{Tr} [Q (0) \mathrm{D}^2 \mu], G \ast \mu \rangle] +\mathbb{E} \left[ \sum_k \langle \operatorname{div} (\sigma_k \mu) {,} G \ast (\sigma_k \cdot \nabla \mu) \rangle \right]\)
\(\displaystyle =\mathbb{E} [\langle \operatorname{Tr} [Q (0) \mathrm{D}^2 \mu], G \ast \mu \rangle] -\mathbb{E} \left[ \left\langle \left( \left( \sum_k \sigma_k \sigma_k^{\mathrm{T}} \right) \mathrm{D}^2 G \right) \ast \mu, \mu \right\rangle \right]\)
\(\displaystyle =\mathbb{E} \int \int \operatorname{Tr} [(Q (0) - Q (x - y)) \mathrm{D}^2 G (x - y)] \mu_t (\mathrm{d} x) \mu_t (\mathrm{d} y)\)

Now

\(\displaystyle \nabla G (x) = - \frac{x}{| x |^2}, \qquad \nabla^2 G (x) = - \frac{1}{| x |^2} \left( -\mathbb{I}+ \frac{2 x x^T}{| x |^2} \right),\)

and

\(\displaystyle Q (0) - Q (x) \approx \beta_L | x |^{2 \alpha} \frac{x x^T}{| x |^2} + \beta_N | x |^{2 \alpha} \left( \mathbb{I}- \frac{x x^T}{| x |^2} \right), \qquad \beta_N = (1 + 2 \alpha) \beta_L > \beta_N\)
\(\displaystyle \operatorname{Tr} [(Q (0) - Q (x)) \mathrm{D}^2 G (x)] = \frac{1}{| x |^2} (\beta_L | x |^{2 \alpha} - \beta_N | x |^{2 \alpha}) + O (| x |^{2 \alpha - 2})\)
\(\displaystyle = \underbrace{(\beta_L - \beta_N)}_{< 0 (!)} | x |^{- 2 + 2 \alpha} + O (| x |^{- 2})\)

with a negative sign! Therefore

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \mathbb{E} \left[ \int \int \log (| x - y |^{- 1}) \mu_t (\mathrm{d} x) \mu_t (\mathrm{d} y) \right] = - C\mathbb{E} \int \int | x - y |^{2 \alpha - 2} \mu_t (\mathrm{d} x) \mu_t (\mathrm{d} y) + \text{l.o.t.}\)

Note that

\(\displaystyle \int \int \log (| x - y |^{- 1}) \mu_t (\mathrm{d} x) \mu_t (\mathrm{d} y) = \langle \mu, (- \Delta)^{- 1} \mu \rangle = \| \mu \|_{\dot{H}^{- 1}}^2\)

and

\(\displaystyle \int \int | x - y |^{2 \alpha - 2} \mu_t (\mathrm{d} x) \mu_t (\mathrm{d} y) = \langle \mu, (- \Delta)^{- \alpha} \mu \rangle = \| \mu \|_{\dot{H}^{- \alpha}}^2\)

from which we have a gain of \(1 - \alpha\) regularity since

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \mathbb{E} \| \mu \|_{\dot{H}^{- 1}}^2 = - C\mathbb{E} \| \mu \|_{\dot{H}^{- \alpha}}^2 + \text{l.o.t.}\)

Step 2. Anomalous regularisation for Euler+Kraichnan

Wanted regularisation for the full equation. The idea is that the non-linear drift preserves the \(\dot{H}^{- 1}\) norm.

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \mathbb{E} [\langle \theta, G \ast \theta \rangle] = -\mathbb{E} [\underbrace{\langle u \cdot \nabla \theta, G \ast \theta \rangle}_{= 0}] \underbrace{- c\mathbb{E} [\| \theta \|_{\dot{H}^{- \alpha}}^2] + \text{l.o.t.}}_{\text{terms from the noise}}\)

so

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \mathbb{E} [\| \theta \|_{\dot{H}^{- 1}}^2] = - c\mathbb{E} [\| \theta \|_{\dot{H}^{- \alpha}}^2] + \text{l.o.t.}\)

See also recent paper of Coti-Zelati, Drival, Gwalani (2024).

Step 3. Uniqueness

Take \(\theta^1, \theta^2\) for E+K, let \(\theta = \theta^1 - \theta^2\), then

\(\displaystyle \mathrm{d} \theta = (K \ast \theta^1) \nabla \theta + (K \ast \theta) \nabla \theta^2 + \nabla \theta \mathrm{d} W = \frac{c}{2} \Delta \theta .\)

Idea: get the \(\dot{H}^{- \alpha}\) norm from the noise, for the drift use conservation of \(\dot{H}^{- 1}\), conservation of \(L^p\) and control with \(\dot{H}^{- \alpha}\).

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \mathbb{E} [\| \theta \|_{\dot{H}^{- 1}}^2] = - C\mathbb{E} [\| \theta \|_{\dot{H}^{- \alpha}}^2] - 2\mathbb{E} [\langle G \ast \theta, (K \ast \theta^1) \nabla \theta \rangle] - 2\mathbb{E} [\langle G \ast \theta, (K \ast \theta) \nabla \theta^2 \rangle] + \text{l.o.t.}\)

the conservation of \(\dot{H}^{- 1}\) norm we have \(\langle G \ast \theta, (K \ast \theta) \nabla \theta^2 \rangle = 0\), while the other trilinar term needs some control (actually we do not care much since we can anyway bound it).

\(\displaystyle | \langle G \ast \theta, (K \ast \theta^1) \nabla \theta \rangle | = | \langle \underbrace{(K \ast \theta^1) \nabla G \ast \theta}_{\dot{H}^{\alpha}}, \underbrace{\theta}_{\dot{H}^{- \alpha}} \rangle |\)

and using the inequality \(\| f g \|_{\dot{H}^{\alpha}} \lesssim \| f \|_{\dot{H}^{2 \alpha}} \| g \|_{\dot{H}^{1 - \alpha}}\) if \(\alpha < 1 / 2\) we have, by apriori estimates and if \(\alpha \leqslant 1 - 1 / p, \alpha < 1 / 2\):

\(\displaystyle \lesssim \| (K \ast \theta^1) \|_{\dot{H}^{2 \alpha}} \underbrace{\| \nabla G \ast \theta \|_{\dot{H}^{1 - \alpha}}}_{\lesssim \| \theta \|_{\dot{H}^{- \alpha}}} \| \theta \|_{\dot{H}^{- \alpha}} \lesssim \| \theta \|_{\dot{H}^{- \alpha}}^2 \| \theta^1 \|_{\dot{H}^{2 \alpha - 1}} \lesssim \| \theta \|_{\dot{H}^{- \alpha}}^2 \| \theta^1 \|_{L^P \cap L^1} \| \theta \|_{\dot{H}^{- \alpha}}^2 \| \theta_0 \|_{L^P \cap L^1}\)

however if \(\alpha < 1 - 1 / p\) we can play with usual tricks and interpolation to obtain a slightly better bound and close the estimate via Young's inequality and obtain

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \mathbb{E} [\| \theta \|_{\dot{H}^{- 1}}^2] + c\mathbb{E} [\| \theta \|_{\dot{H}^{- \alpha}}^2] \lesssim \varepsilon \| \theta \|_{\dot{H}^{- \alpha}}^2 + C_{\varepsilon} \| \theta^1 \|_{L^P \cap L^1}^2 \| \theta \|_{\dot{H}^{- 1}}^2\)

which gives uniqueness.

In the last 15 minutes we will talk about other topics. The problem in Euler is to control the non-linear term, apriori estimates give easily compactness of smooth approximations in \(L^2\). With Kraichnan we get estimates in \(\dot{H}^{1 - \alpha}\) which gives strong compactness in \(L^2\) and we can pass to the limit easily in the equation.

Theorem. (Galeati–Grotto–Maurelli, 2024+) Linear Kraichnan with \(\alpha \in (0, 1)\)

\(\displaystyle \partial_t \mu +\operatorname{div} (\mu \circ \mathrm{d} W) = 0,\)

then, for all \(s \in (0, d / 2)\),

\(\displaystyle \frac{\mathrm{d}}{\mathrm{d} t} \mathbb{E} [\| \mu \|_{\dot{H}^{- s}}^2] = - C\mathbb{E} [\| \mu \|_{\dot{H}^{- s + 1 - \alpha}}^2] + \text{l.o.t.}\)

Theorem. (Jian–Luo, 2024+ & Bagnara–Galeati–M. 2024+) Consider generalized SQG, the strong uniqueness for solutions in \(L^p \cap L^1\) with \(p \geqslant 2\).