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First we compute Brownian motion expectations of some Kac’s functionals. 
This allows a complete study of the semigroups generated by the formal 
differential operator H = -$A + V on the various Lebesgue’s spaces Lq = 
P{[w”, dx), whenever the negative part of V is in L” -1~ Ln for some p > max 
(1, n/2). Our approach is probabilistic and some of the proofs are surprisingly 
elementary. The negative infinitesimal generators of our semigroups are shown 
to be reasonable self-adjoint extensions of H. Under mild assumptions on V, 
His unitary equivalent to the Dirichlet operator, say D, associated to its ground- 
state measure. We study regularity of the semigroups generated by D. We 
concentrate on hyper and supercontractivity and we give, using probabilistic 
techniques, new examples of potential functions 1’ which give rise to hyper and 
supercontractive Dirichlet semigroups. 

I. INTRODUCTION 

There is a well known relation between the theory of diffusion processes, 
second order elliptic and parabolic equations and potential theory on the 
Euclidean space UP. In the present paper we take advantage of this interplay 
to study the imaginary time Schrodinger operator -40 + I’ in a manner 
which brings probabilistic mechanisms to the foreground. 

This approach originates in the work of Kac [24]. Using Wiener’s measure 
in the case of heat equation, he made mathematically rigourous the heuristic 
prescriptions given by R. Feynman to solve Schrodinger equation. It was a 
new momentum in this study and a wave of interest was initiated by this 
publication (see for example [31, 14, 2, 12, 6, 27, 1, 3, 51). Although some of 
the results presented here are essentially known, our proofs are new, at least 
in nature. While these results agree with those found using differential equation 
techniques, as desired, it is informative to probe their anatomy in the path 
space picture more deeply. 
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The relation of our results to certain problems in quantum field theory 
should not be unnoticed. Indeed, even though the discussion of this paper 
is confined solely to the study of particular quantum mechanical Hamiltonians, 
our work has been motivated in large measure, by a potential applicability of the 
concepts and methods we use to fundamental problems in quantum field theory. 

Since the title may not give a clear idea of the scope of this article, we proceed 
to a summary of the contents of the following sections. 

The first part of Section II covers the basic notations and definitions necessary 
to the following work. Since averages of various expressions with respect 
to Wiener measure are extensively used in this paper, we introduce the coordinate 
representation of Brownian motion Markov process, and we state and prove 
the properties of the so-called Kac’s averages which we use in the present 
paper. There is none but a new result in this section (see Theorem 2.1 below). 
It provides us with a finer estimation than Berthier-Gaveau’s one [3, Theorem 11. 
Our proof draws its inspiration from Simon’s proof of Berthier-Gaveau’s 
theorem (see [43, Theorem 11.21) and Lieb’s proof of a conjecture on the number 
of bound states for Schrodinger operator (oral communication). The crucial 
point of our estimate is the exhibition of a simple time dependence. 

Section III is devoted to the definition and the study of semigroups generated, 
by the formal differential operator H = -$A + b’ on various Lebesgue’s’ 
spaces. These semigroups are defined via the so-called Feynman-Kac formula. 
This approach is not new (see for example [31, 14, 2, 27]), but, unfortunately, 
it required a severe restriction: the potential function V had to be assumed 
bounded below. Thanks to the above mentioned Kac’s averages estimation, 
we have been able to push the proofs of [31, 141 in order to include unbounded 
below potential functions L’. In fact the negative part of I- is required to be 
in LZ(lFP, d.~) + Lp(lP, do) for some p > max{ 1, n/2}. Among the smoothing 
properties we prove, let us single out the followings: (a) the semigroup generated 
by H maps boundedly L*(llP, d.r) into L’(R”, ds) whatever the extended real 
numbers 9 and r are, provided q is finite and q < r, (b) this semigroup is strongly 
continuous on L*(llP, d.r) if q < + a and 1’ E L&,c(R?l, d-v), (c) its range is 
contained in C&R”) the space of continuous functions which vanish at infinity 
whenever V EL~~,(IR”, &x) for some p > n/2. Similar regularity properties 
have been obtained quite recently by Herbst and Sloan [20]. Their conclusions 
are somewhat weaker in some places but they are also stronger in allowing 
more general local perturbations. 

Most of the material of Section I\’ is essentially known. First we prove 
that the negative infinitesimal generator of Schrodinger semigroup acting in 
L*(W, 4, say H, , y ields a reasonable self-adjoint extension of H. This 
generalizes some recent work of Semenov [37]. Second we check that Hz 
coincides with H defined as sum of quadratic forms. Third we show that 
intricate proofs of some known results are streamlined by the methods of the 
probabilistic approach. Finally the section ends with a brief review on Dirichlet 
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forms associated to probability measures on LP, a technical lemma to exhibit 
a form core and a proof that Hz is unitary equivalent to the Dirichlet operator 
associated to its groundstate measure. 

Section V is devoted to the study of hyper and supercontractive properties 
of Dirichlet semigroups. The theory of hypercontractive semigroups is an 
abstraction of certain developments in quantum field theory (see e.g. [28, 17, 36, 
34, 21, 181). For the free Markov field, E. Nelson gave a final form and proved 
the best possible estimates [29]. Nelson’s latest proof is probabilistic in nature. 
Among the numerous alternate proofs of his best hypercontractive estimates, 
we point out a very novel one [30] which involves sophisticated martingale 
representation theorems. Another elegant proof of Nelson’s theorem was 
given by Gross [19] who proved that hypercontractive estimates are equivalent 
to logarithmic Sobolev inequalities; moreover he proved that the latters should 
be the correct substitute of classical Sobolev inequalities in the infinite dimen- 
sional setting because they provide semi-boundedness theorems for perturbed 
Hamiltonians in the same manner as classical Sobolev inequalities imply semi- 
boundedness for some perturbations of the free Hamiltonian -40 onLa(UP, d.~). 
Gross’ very neat paper initiated the study of operator estimates via logarithmic 
Sobolev inequalities (see [13, 9, 11, 44, 33, 411). Nevertheless means for proving 
these inequalities in the infinite dimensional setting of interacting quantum 
fields has not yet been found and it is hoped that the techniques presented 
in this paper will be of some help. The first part of Section V is nothing but 
a show of essentially known material. We state and prove equivalent forms 
of hypercontractivity for Dirichlet operators, one of them being a lower bound 
for the exponential fall off of the ground state eigenfunction in terms of the 
behavior at infinity of the potential function. This, together with results of 
[5, Section IV], provide us with non-spherically symmetric potential functions 
V which give rise to hypercontractive semigroups. These examples could 
not be known from [9, 33, 411. The section ends with a detailed proof of a new 
example with a special emphasis on the key role of Brownian motion expectations. 
The main novelty of this section is certainly the use of stochastic process tech- 
niques in this area. We hope the present work serves to stimulate further 
research in this direction. 

To keep the bibliography to a moderate length, we have adopted the conven- 
tion that “see reference [x]” means “see reference [x] and the papers referred 
to therein.” 

II. BROWNIAN MOTION AND KAC'S AVERAGES 

In this paper n 3 1 is a fixed integer. Our basic space is a real Hilbert space 
of dimension it (which we identify with Rn), the inner product of which is 
denoted by a dot and the corresponding Hilbertian norm by 1 . I. 

5843313-3 
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First we introduce the notations we use for the various function spaces. 
C(UP) denotes the space of continuous functions on R”; if k E [l, co] is an 
integer, we use the superscript K to denote the subspace of K-times differentiable 
functions and the subscript b (resp. 0, c) is used to specify that the functions 
are bounded (resp. tend to zero at infinity, have compact support). If p E [l, “01 
the symbols L” will be used to denote the various Lebesgue spaces over Rn 
taken with Lebesgue’s measure. As usual, we do not make any difference 
between functions and equivalence classes. I/ . IID stands for the Ln-norm and 
11 . llD,Q for the norm of an operator from LP into Lg. When we use a measure p 
instead of Lebesgue’s measure, the dependence on the measure p will be 
specified by LP(p) and I/ . IILp(,,) . For any subset U of a given set, Q,, stands 
for the indicator function of U (i.e. 21, equals I on U and 0 outside), and for 
any real valued function f on [w”, f+ and f- have the following meaning: 

f+ = fQ k>O) and f- ==f+-f. 

Second we fix the probabilistic notations and we review standard facts on 
Brownian motion which we are going to use. Q = C(W+ , KY) is the space 
of continuous functions from R, into PP. For each t > 0 

x,: 52 3 w I-+ X,(w) = w(t) 

is the tth coordinate function (for typing convenience Xt will sometimes be 
written X(t)), 

e,: a 3 w H e,w E Q 

is the time translation defined by: 

[bwl(s) = w(t + s) s .a 0, 
and Pi = u{X, ; 0 < s < t} is the smallest o-field of subsets of !Z for which 
all the functions X, with 0 ,( s < t are measurable. Now, if we set: 

9 = u(X, ; t 3 O}, 

9 is nothing but the Bore1 a-field of Q equipped with the topology of uniform 
convergence on compact subsets of R, . On the measurable space (52, .9) 
there is a unique probability measure, say U;, which satisfies: 

(i) lV{Xo = 0} = 0. 

(ii) If 0 = f, < t, < ... < t, , on the probability space (Q, F’, W), the 
random variables X(tl) - X(t,),..., X(tn) - X(t,_.J are independent, the jth 
being Gaussian with mean zero and variance tj - tjpl . 

The construction of this measure is due to Wiener and can be found in any 
standard text book on stochastic processes (see for example [23, Chapter l] 
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for several constructions). For each x E R’” the probability measure bli;6 is 
defined by: 

TVz{A} = IV{T&4)} A EF, 

where 7s is the path translation: 

[T&J](f) = *t’ + w(t) x E R”, w EQ, t > 0. 

The symbol E,.z is used to denote the expectation and the conditional expectation 
with respect to Wz . The collection {IITz ; s E W} is a Markov process in the 
following sense: 

(i) V.v E R”, JVX{X, = X} = 1, 

(ii) for any bounded P-random variable @, the function W 3 x w I?‘,,~{@} 
is Bore1 measurable. 

have(iii) for any .x: G R n, t > 0, and any bounded S-random variable @ we 

E,P o @t I&> = ~wx,,,P>. (2.1) 

Let us note that in the usual probabilistic terminology such a Markov process 
is called normal, time homogeneous and conservative. (IV,, ; x E Rn} is in fact 
a strong Markov process, that is, (2.1) is true, not only for constant times t, 
but for all St-stopping times (this fact is due to Hunt [22]; see also [23, Sect. 1.61 
for a proof). For each measurable functionf on W we set: 

PtflW = E,W&)> (2.2) 

whenever this latter expression makes sense. Let us point out that: 

[PtflC4 = j- ~(Y>P&,Y) 4 w 
where pt(x, y) is the Brownian transition function, namely: 

pt(x, y) = (27d)-n/2 exp[- I x - y 12/2t] t > 0, x, y E R”. (2.3) 

For each p E [ 1, co[, (Pt ; t 3 0} is a strongly continuous contraction semigroup 
on L”. If A, denotes the negative infinitesimal generator we have: 

c@(A,) = {f ELD; Of ELP} and A,f = -*Of if f E B(A,) (2.4) 

where 9(A) stands for the domain of the operator A and where Of means 
Laplacian off in the sense of distributions. Furthermore, for each t > 0 and 
each p E [l, co[, P, is a bounded operator from LP into L* whose norm satisfies: 

II pt 1lp.m G c(P) t-n’np (2.5) 
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where: 
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C(P) = ;;:;I:;:p(l i’,!&-I,,,, I if l<p<co (2.6) 

Now, if p > 1, p > n/2, t > 0, and f ELP, (2.2) and (2.5) imply: 

s 
t 

sup r&” 0 E&f (-&)I ds < (1 - +‘~)-‘t~-“‘~~c(p) llf II,> . (2.7) 

In order to state the only new result of this section we have to recall the definition 
of the so-called Mittag-Leffler functions: 

e,(x) = c 
Xk 

k>O w + w 
XE R, E > 0. 

THEOREM 2.1. If V is a positive function in Lp for some p > n/2, then for 
each t > 0 we have: 

(2.9) 

where E = 1 - n/2p. 

Proof. If k > 1 is any integer and if 0 < sr < ... < sk < t we have: 

= &vzWW,)) -0. V(X(s,-1)) J%v~VN~~) I &k-J> 
= &zV’(-W,)) .** WV,-,)) J%v,,~~JW(S~ - sir-I)))) 
< C(P) II v Il,(Sk - st-1)-“‘““Ew,{V(X(s,)) *** wL,))I 

where we used the Markov property (2.1) and (2.5). A k steps induction gives: 

&vzWW) *** V(X(sdl 
< c(p)” I/ v 11; s;“‘*p(s2 - s1)-n’2P -0. (Sk - sk-l)-n’2P, (2.10) 

which yields: 

< k! (C(P) II ~ll,WWW + kc) (2.11) 

by integrating the right hand side of (2.10). Now, in order to prove (2.9) it 
suffices to expand the exponential, to interchange the expectation and the expan- 
sion, (2.11) and the definition of E and (2.8). i 
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The idea behind the proof of Theorem 2.1 is not new. It has been taken 
from Simon’s proof of Berthier-Gaveau’s theorem and Lieb’s proof of a con- 
jecture on the number of bound states for Schrodinger operator (oral com- 
munication. See also [26]). We refer to [3, Theorem l] for Berthier-Gaveau’s 
theorem, to [43, Theorem 11.21 for Simon’s proof of this theorem and to the 
section on bound states problems of [43] for Lieb’s result. 

The crucial point of our result is the estimation of the dependence on t for 
Kac’s averages. This is possible thanks to the following standard property 
of Mittag-Leffler functions: 

~&I-J e,(x) - cl exp[.+] = 0 (2.12) 

For later reference we state here a standard property of Brownian motion 
expectations which we use in different places. For each t > 0, the path space 
transformation yt is defined by: 

w(t - s) [rtwl(s) = (w(o) if O<s<t 
if s > t. 

Then for any positive Z$random variable @ we have: 

s Ewz{@} da- = j- Ewz{@ 0 yt} dx 
W” W” 

(2.13) 

III. HEAT SEMICROUP IN A POTENTIAL OF CLASS ?b'- 

First we define the class of potential functions which we work with. 

DEFINITION 3.1. An extended real valued function V on W is said of class %“ 
(or belonging to 9’) if V is measurable and if V- EL= + LP for some p 3 1 
which satisfies p > n/2 (such a p will sometimes be denoted p(V)). 

Whenever we consider a breakup V = V, - V2 of a potential of class %. 
it will be implicitely assumed that Vi is measurable and bounded below, 
V, > 0 and V, E L”‘v). Now, if T’ E %‘-, if t > 0 and if x E W, by (2.7) we have: 

o< t s v&G) ds < + 00 TVz-a.s. 
0 

and thus: 

s 
t 

--co< V(X,) ds < + ~0 IV,-a.s. 
0 
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As we use the convention e-” = 0 Kac’s averages are meaningful1 for potentials 
of class V-. Theorem 2.1 implies that for each t > 0 and Y > 0: 

K(Y, t) = min E,, [exp (-Y Iot I’(X,) do)] < co. (3-l) 

Remark 3.1. As it is easily seen, using (2.9) and (2.12) we have: 

K(Y, t) < KC exp[(c(p)l” I/ 1’a Il:~r(~)l~~~~l~ - Y inf Vr)t] (3.2) 

where E = 1 - n/2p and where the dependence of the constant k, on E could 
be precised. 

Now let us define the heat semigroup via the so-called Feyman-Kac’s formula: 

DEFINITION 3.2. If V is a potential function of class V, iff is a measurable 
function on lP, if x E lW and if t > 0 we set: 

[Tt “flW = 6~~ [f&J exp [ -1,’ ~‘(XJ ds] 1 (3.3) 

whenever this expression makes sense. 
For typing convenience we omit the superscript r whenever the dependence 

on the potential function is clear and no misunderstanding possible. 
Before concentrating on Lebesgue’s spaces let us study, for a short while, 

these operators on larger classes of functions. Following [14, Sect. 31 we set: 

DEFINITION 3.3. A Bore1 measurable function f on (FBn is said to be moderate 
if for each a > 0 we have: 

s If We- alrl2 dx < co. ~” 

Let ,&’ be the set of moderate functions. It is a translation invariant linear space 
contained in Li,,, and which contains all the Lp for p E [ 1, co]. If f E ,fl and if 
a > 0 we have: 

I i[T,f](x)l ecaizl” dx 
Iw” 

< 872, t)l’“(4at + 1)-~1,‘~ 1 I,f(x)l esp[--/ J ]“‘2(t + 1,4n)] ds 
‘I.!” 

< 00, (3.4: 
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where we used (2.13), H Id 6 er’s inequally and the fact that for each 0 > 0 
we have: 

~w,{e-IXsl’~‘“~ - , _ [q. + s)]‘L:a e-/zl”m+s) 

In fact (3.4) proves that (3.3) makes sense for a.e. s E JR” and that the function 
so defined is moderate whenever f is moderate. If moreover 1 f Iq is assumed 
to be moderate for some q > I, then (3.3) makes sense for all x E R” since: 

E, /f(X,) exp r-1,” J-(X,) A]/ < E,~{lf(xt)l”}l:n~(q’, t)““’ 

where q’ denotes the conjugate exponent of q (i.e. q-l + q’-’ = 1). From (3.3) 
it is easily seen that: 

U < V a.e. =- TtVf < Ttuf a.e. 

whenever U and JV are potential functions of class $“, t > 0 and f is a non- 
negative moderate function. Moreover, from (2.7) it is clear that: 

C’ = J,’ a.e. a T,“‘f = Ttuf a.e. 

Later on in this paper (see Proposition 4.1 below) we will infer properties on 
T,” from corresponding, properties of operators T, vh where the J;: are truncated 
potentials that approximate J’. The very approximation argument is based 
on the following: if (1, ; k ,> l> is a nondecreasing (resp. nonincreasing) 
sequence of potentials of class Y such that: 

lim J, = J-* a.e. k rx 

for some P E Y (resp. and such that moreover: 

V, = Jr+ - c’, k = 1, 2,... 

where the U1( are uniformly bounded below), then, for each t > 0, we have: 

for almost every x E R’” if f E A’ and every Y E R” if 1 f 1’~ E ,c@ for some q > 1; 
furthermore, if f EL” for some q such that 1 < q < -ICC the limit in (3.5) 
takes place in L*-sense. Proofs consist of straightforward uses of monotone 
and dominated convergence theorems. 

Using Brownian RIarkov property, it is easy to prove: 

P”s,tflW = [T,VsfW) (3.6) 
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for almost every x E [w” if f 6 A%Z and every x E [WV8 if 1 f /* E A’ for some 4 > 1. 
For example, the proof given in [14, Theorem 3.11 in the case V 3 0, works 
without any change, in the general case of potentials of class V. 

Next we concentrate on the semigroup (T, ; t 3 0} acting on the various 
Lebesgue spaces. 

PROPOSITION 3.1. Let V be a potential function of class Y, let q E [ 1, co] 
and t > 0. Then T, is a bounded operator on L” and its rwrm satisfies: 

II Tt IIm < KU, t). (3.7) 

If q’ denotes the conjugate exponent of q, iff E Lq and if g E LQ’ we have: 

j- P’tf 1(4&) dx = 1 f CWtgl(4 dx. (3.8) 
R” EP 

Furthermore Tt is a bounded operator from Lq into Lr for all extended real numbers q 
and r in [ 1, CD] provided q is$nite and q < r. Finally, if f E Lq for some$nite q 3 1 
we have: 

,&JWl(4 = 0 (3.9) 

Proof. From the definitions of T, and of K(l, t) it is clear that (3.7) is 
satisfied when q = co. Furthermore if f E L’ we have: 

where we used (2.13). This proves (3.7) when 4 = 1, and the general case 
follows Riesz-Thorin interpolation theorem. If f and g are assumed to be 
nonnegative (3.8) is a straightforward consequence of (2.13). Indeed: 

JR. [Ttfl(x)&)dx = jRnEws ~f(Xdg(X,)e~p r-s,” v(Xs)ds]/ dx 

= JR” Ewz If (X0) gWJ exp [-it &G) ds] 1 dx 

= s @.f W[TtglW dx, 
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and the extension to general f and g is obvious. Now if 1 < 4 < cc and if 4’ 
is the conjugate exponent of Q, for any x E [w” we have: 

(3.10) 

which proves that: 

11 Tt llq,m < (277)~‘@* K(q’, t)l;*’ trnjeQ. 

Now (3.9) follows (3.10) and the corresponding property of the semigroup 
P t ; t > O}. Consequently the last assertion of Proposition 3.1 is proved when 
4 > 1 and Y = co. In order to capture the others cases we use the semigroup 
property (3.6) and the self-adjointness property (3.8). 1 

Remark 3.2. The finiteness of // T, I/U.r, and (3.9) are uniform in t restricted 
to any interval [to , tr] such that 0 < t, < t, < co and uniform in 5’ restricted 
to a subclass of V in which a breakup T,’ = VI - Va can be found with the 
VI uniformly bounded below and the // Vz /iI, bounded for one p > n/2 common 
to all the P. 

Remark 3.3. Formulae virtually identical to (3.10) had already been used 
in [6] and [20]. Herbst and Sloan’s results in [20] are similar to some of ours. 

They are stronger in allowing more general local perturbations but weaker 
in proving boundedness of T, only from Lq to L’ for q and Y restricted to suitable 
intervals. 

In order to prove that the semigroup {T, ; t > 0} is strongly continuous on 
the various Lebesgue spaces we need the following: 

LEMMA 3.1. Ij VEL&,, is nonnegative, for almost every x E W we have: 

(3.11) 

Proof. Let us assume first that V E L1 and let t > 0. By Fubini’s theorem 
we have: 



270 RENti CARMONA 

Now, using twice Fubini’s theorem we obtain: 

s t V(X,) ds < m kV,-a.s. 
0 

for almost every x E W, and this yields (3.11). Now, let us assume that P’ EL&~ is 
nonnegative. For each integer k > 1 let us set: 

v, = VB(~,~c&.J . 

VI, E:L~ and thus we can choose a negligeable subset Nk of Rn such that: 

Now, if x $ N = Uk Nk is fixed and if k is such that k > / .x /, Wz-almost 
surely we can choose a t > 0 such that: 

s 

t 

V&Y,) ds < co. (3.12) 
0 

Now, as V and Vk coincide in an open neighbourhood of x, decreasing t if 
necessary, (3.12) remains true if we replace I’k by Ti. This concludes the proof. l, 

PROPOSITION 3.2. If V is a potential function of class ,%’ such that L,-+ EL:,,, , 
then for any q E [I, m[, {Tt ; t > O> is a strongly continuous semigroup on LQ. 

Proof. C,(R’T) being dense in LQ and /I T, llo,a being uniformly bounded in t 
restricted to any bounded neighbourhood of zero, it suffices to prove: 

ljrr T,f = f 

in Lq-sense for all f E C,(W). Moreover, without any loss of generality we may 
assume f 2 0. By Lemma 3.1, there is a Bore1 subset of W, say N, whose 
Lebesgue’s measure is zero and which satisfies: 

Since f is continuous, if s $ N we have: 

hk;f (.Y,) exp [ -JJ: J’(-y,) ds] -f(s) IV,.-a.s. 

nioreover, if r > 1 we have: 

(3.13) 

sup E, if (X,)l‘ esp [-r 1’ V/(X,) ds]l s 11 f 112 sup K(r, t) < ‘x, 
O<Kl . 0 0.;t?1 
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which proves that the net {f(X,) exp[-Ji V(X,) A]; 0 < t < l> is equi- 
integrable near zero, and since, by (3.13), it converges IV,-a.s., we conclude 
that it converges in Lr(Q, W,), and consequently we have: 

.Y $ LV =- h$TJ](m) = f(x). (3.14) 

The above argument did not use the compactness of the support off, and thus, 
(3.14) is true forf = Q,, . Namely we have: 

which, together with: 

sup K(1, t) < +m 
octs1 

implies, by the dominated converge theorem that: 

for 9 = 1. (3.15) remains true if Q > 1 because the bound needed to use 
Lebesgue’s theorem is provided by (3.10). Now, the conjunction of (3.14) 
and (3.15) yields the desired conclusion. 0 

Remark 3.4. By the self-adjointness property (3.8) it follows that (T, ; t ;: 01 
is continuous on Lm for the weak-*-topology, but, as we will see later on (see 
Proposition 3.3 below) at least under mild conditions on b’, the semigroup 
cannot he strongly continuous on Lr. 

Remark 3.5. IF-hen 1_ > 0, the technical assumption T’ EL&~ can be 
dropped and replaced by the conclusion of Lemma 3.1. In [14] and [27] this 
remark is further discussed. 

For each q E [I, CC[ let us denote by -H, the infinitesimal generator of 
the semigroup -:7’, ; t > 0). on the Banach space LO. By (3.7) and (3.2) we have: 

Vt 3 0 : T, lIp.g < KefE II (3.16) 

for some positive constants K and E independent of t. In the case q : 2, 
Hz is symmetric because the T, are self-adjoint. Moreover (3.16) implies that 
Hz is self-adjoint and bounded below by -E. In fact, (3.16) says that ]- cc, -E[ 
is contained in the resolvent set of H, whatever 4 > 1 is. 

The study of these infinitesimal generators is postponed to nest section. 
We prove now that nice regularity properties of the operators T, can be obtained 
via mild restrictions on the potential function T’. 
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PROPOSITION 3.3. If V is a potential function of class W”, if t > 0 and if 
f ELq for some q E [I, <CD] then Ttf is continuous on the open subset of I$” whose 
points are those x which possess a neighborhood on which the p(x)th power of V+ 
is integrable for some p(x) > n/2; in particular, Ttf is continuous on Iw” if 
V+ E L:o”c/‘. (A measurable function g belongs to L& if for any compact set A’ 
in W there is a real number p(K) > 01 such that gl K E L”fK)). 

Proof. Because of the smoothing properties of the semigroup {P, ; t > 01, 
Proposition 3.3 is an immediate consequence of the following: 

LEMMA 3.2. Let K be a compact subset of R”, U be a bounded open netghbour- 
hood of K ano! V = V, - VY2 a potentialfunction of class Y such that V,llr ELO 
for some p > n/2. Then, for each E > 0, for each interval [to, tJ such that 
0 < t, < t, < oci, and for each q E [ 1, cn] we can choose a positive number r0 
such that for any f E Lq we have: 

SUP SUP SUP l[T,f I(4 - [PAT,-,f )I(-$ < E Ilf Ilrz 
o<r<rq f,SfSf, EK 

(3.17) 

Proof. By Remark 3.2 and the semigroup property it suffices to prove (3.17) 
when 4 = co. Let E, to and t, be fixed and let y > 0 be such that: 

Y sup K(1) t) < E:2. (3.18) 
ost<t,-t,~2 

Once such a y > 0 is fixed, let us choose a > 0 such that for any real number b 
we have: 

1 b 1 < a 2 / e-b - 1 / < y. (3.19) 

Now let us assume that Y is such that 0 < r < to/2 and for such an r let us set: 

(3.20) 

Finally we fix f E L” and x E W. By the Markov property of Brownian motion 
we have: 

[Ttf 164 = hz If (W exp [ -Jrt V(XJ ds] 1 

+ Gz If (X4 (exp [ -[ V(X,) ds] - 1) exp [ -lrt V(&) ds]/ 

= [PAT,-rf )I(4 
+ -%, f-f 6%) (exp [-c V(X,) ds] - I) exp [-Jr’ VW,) ds]; A’/ 

t -Gz I~VJ (exp r-s,’ V(X,) ds]--1) exp [ -Jrt KYJ ds]; A,“\ 

= [PAT*-,f )I(4 + (9 + (3 (3.21) 
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But, because of (3.20) and (3.19) we have: 

(3.22) 

where we used once more the Markov property of Brownian motion, (3.7) 
with q = co and (3.18). Moreover we have: 

with: 

I( G 4~~ ~lfFG~l exp r-s,’ W%) ds]; Arc/ 

+ -6~~ ]lf(WI exp [-I’ WY ds]; ~~“1 

r = (iii) + (iv), (3.23) 

and: 

(iii) < /lfllrn sup K(2, t)1~2Wz{Arc}1~2, 
oststl 

(3.24) 

(iv> d -6~~ IfGW” exp 1 [-2 jt V(X,) dsjlliZ W,{A,e}l’2 

= [P,( T,“_‘, If ,.)](x)l~~wz,~~,l~2 

G Ilf IL sup K(2, ,)WVz{Arc}i’a. 
06titl-to’2 

By (3.21)-(3.25) we will conclude when we prove: 

(3.25) 

!‘r, sup sup Wz{ArC} = 0. 
0 o<r<rlJ rsK 

(3.26) 

Now, let d be the distance from K to the complementary set UC of lJ, and for 
each s > 0 let us set: 

For any given 6 > 0 we can choose an s > 0 such that: 

sup Wz{B,c} < 6,,2. 
XEK 

(3.27) 

Indeed standard text books tell us that: 

l&W(sup IX,1 >d)=O. 
OSUSS 
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(see [31, Lemma 21 for a proof; one can also obtain a good estimate of the above 
probability from Levy’s maximal inequality, see for example [5, Formulae 2.41). 
Moreover, for such an s, and for all x E K we have: 

with can be made less than S/2 provided Y is small enough; this, together with 
(3.27) proves (3.26). 1 

Remark 3.6. In the case I’+ is bounded one can say more about the regularity 
of Z’J for f in some of the L*. Indeed, from [20, Theorem 9.71 it follows that 
Ttf is Holder continuous. 

LEMMA 3.3. Let 1;’ be a real valued, bounded below, Bore1 measurable function 
on W which satisfies: 

,lilm V(x) = +co. (3.28) 

Then, for each t > 0 we have: 

lim sup EWz fexp [-s,” V(X,) ds]; / X, I > a/ = 0. (3.29) a+r .&7gn 

Proof. If E > 0 is fixed, standard properties of Brownian paths (again see, 
for example [31, Lemma 21 or the same [5, Formulae 2.41) implies the existence 
of a d > 0 such that: 

exp[t / inf I’ [] Wo{ sup I X, ] > d} < 42. 
OS& 

(3.30) 

Once such a d > 0 is fixed, by (3.28) we can choose a large enough to have: 

exp[--t ,,,g2d V(Y)1 -=-c E/2. / 

Now, if / N I < a - d we have: 

(3.31) 
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because of (3.30), and,if/xl >a--wehave: 

by the conjunction of (3.30) and (3.31). 1 

PROPOSITION 3.4. Let V = I’, - l/z be a potential function of class Y’^ 

such that: 

,l& V,(x) = + a. 

Then, for each t > 0 and each q E [l, co], T, is a compact operator on Lq. 

Proof. Since an operator is compact if and only if its adjoint is compact, 
;hye can assume 1 < q < 2. By Proposition 3.1 we have, for each a > 0: 

SUP SUP VtflWl < +a. 
llfll,Cl IsISa 

(3.32) 

Now, let OL be any exponent satisfying 1 < CY < cc and let a’ be its conjugate 
exponent. For each a > 0 we have: 

i , ,> I[Ttfl(~)l” dx 
2 a 

which, by Theorem 2.1 and Lemma 3.3, implies: 

a_~ ,,,,, <1 j,,,, l[TtflWl” dx = 0. lim sup 
a’ 

(3.33) 
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(3.32) and (3.33) are sufficient for Tt to be compact on LQ if q f 1. Indeed a 
proof works as follows: if we set: 

“T,lf = (Ttf) 1 uz~sn~ and “T,2f = Ttf - aT,% 

aTtl, when considered as an operator from LQ into LQ({~ x 1 < a}, dx), factorizes 
through Lm({l x 1 < a>, do) because of (3.32); since the natural embedding 
of Lco({I x I < a>, dx) into L*((I x I < a}, dx) is completely continuous (i.e. 
maps weakly convergent sequences into norm convergent ones), and since L* 
is reflexive, aT,l is compact and maps the closed unit ball of Lq into a totally 
bounded set. Now, (3.33) p rovides us with a control on the image of the closed 
unit ball of LQ by aTt4, and this control makes possible checking that Tt maps1 
the closed unit ball of LQ into a totally bounded subset of LQ. 

This argument does not work when q = 1 because LQ is no longer reflexive. 
Nevertheless, the following trick can be used: by Proposition 3.1 T, is bounded1 
from L1 into Lr for any r > 1 and any t > 0. Now, using the formulae 

“T,lf = aT:/,[T,,,f 1 

we can conclude as above. 1 

Remark 3.7. Let us note that the assumptions on V are weaker than: 

IV. SCHR~DINGER AND DIRICHLET OPERATORS 

IV. 1. Sclariidinger Operators as Injkitesimal Generators 

One of the first tasks of nonrelativistic quantum mechanics is to construct 
self-adjoint extensions of the formal differential operator -&l + I’ for fairly 
general potential functions V. Let us show how the infinitesimal generators 
-HQ constructed in the preceding section, supply us with such reasonable 
extensions. 

PROPOSITION 4.1. Let q E [I, co[, let q’ denote its conjugate exponent and let 
V be a potential function of class Y. 

(i) If V EL!& we haae: 

~(HQ)C{~ELQ; -4Af + VfEL*} and fEB(HQ) S- HQf = -&Af+ Vf. 
(4.1) 

Moreover, if V is bounded below, inclusion sign can be replaced by equality sign. 
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(ii) If V ELyOc zue haae: 

c,yrwy c SyH,) and f E C,=(W) =a H,f = -&Af + Vf. 

Proof. Let us assume first that V is bounded below and, in order to prove 
(i) let us fix f~ 9J(H,). F or each integer K > I let us define the truncated 
potential function P’,. by: 

L’, = VQ{&k) . (4.2) 

T’, is bounded and Tp satisfies (3.16) with E independent of R (for example 
we can choose E = max{O, -inf V}). Let us denote by -H,,k the infinitesimal 
generator of the semigroup {T[k; t >, 0} acting on D, and let X > E be fixed. 
If g ELQ is defined by: 

f = (A + H,)-lg (4.3) 
we set: 

fk = (A + Ha,)-‘g k = 1, 2,... . (4.4) 

For each k 3 1, fk E S$H,,,), and since I;, is bounded, g(H,,,) = 9(/Q, 
which implies: 

4 Af,. = Vkfk + Afk - g. (4.5) 

If we let k go to infinity in (4.5), the right hand side converges in L:,, to the 
function Vf + Af - g, and the distribution of the left hand side converges 
weakly to the distribution 4 Of, which, together with (4.3) prove (4.1). Let us 
note that we used essentially the fact that fk converges in LQ to f, which is due 
to the approximation argument we mentioned in section III. 

In order to prove equality instead of inclusion in (4.1) let us define the 
operator T, on Lq by: 

G?(T,) = {f EL*; -&Of + Vf EL”) and fEg(T,) 3 T,f = -iOf + l’f. 

We already proved H, C T, . Now, let us fix f E 9( TO) and let us define g EL* 
and h ELq by: 

g = (A + TJf and g = (A + H,)k 

where h is the same as above. Setting v = f - h we obtain: 

(T, + X)p, = 0. 

Since q E LQ and since its Laplacian in the sense of distributions is in Li,, , 
we can use Kato’s inequality (see for example [32, Theorem X.271) and obtain: 

580!33/3-4 
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A standard argument (see for example the end of the proof of [32, Theo- 
rem X.281) assures that v = 0 which implies f -= h E 9(H,). This concludes 
the proof of (i) when V is bounded below. In order to prove (i) for unbounded 
below potentials V, we use as before, a classical approximation argument. 
For each integer k 3 1 we define the truncated potential function Vk by: 

rt = 18-Q (Vjmn-) . (4.6) 

Now we choose a positive constant E which is independent of k and which 
satisfies (3.16) for all the semigroups {Trr; t > O}. If, as before, we let -H,,, 
denote the infinitesimal generator of the semigroup {Trn; t 2 0} acting on Lg, 
and h be fixed such that A > E, again -A is in the resolvent set of H, and all 
the H,,, , and our approximation argument of section III implies strong con- 
vergence of the corresponding resolvent operators. We end the proof as above. 
Namely vve fixf in O(H,), we define g and the fk by (4.3) and (4.4) and we let k 
go to infinity in (4.5) which remains true because Vk is bounded below and 
because we already proved (i) for such potential functions. 

Now, let us assume VELT,,, and let us prove (ii). As before we assume 
first that V is bounded below. For X as before, 4 = hp, - 3 AT + VT is in 
Id<’ and: 

lim(h + HQ,,))i# = (A + H,)-lqb k-3: (4.7) 

in Lq sense, where H,,, is the truncated operator given by the potential L-k 
of (4.2). Moreover we have v E 9(H,,,) and if we set: 

A = (A + fL& k > 1, 
then we have: 

F-m(” + f&k)-V = 9, (4.8) 

because k- E Lyoc and because by (3.16) and the choice of h the resolvent operator 
norms 11(X + H,,,)-’ 11 are uniformly bounded in k. The conjunction of (4.7) 
and (4.8) prove 4 = Av + H,cp which concludes the proof when I’ is bounded 
below. Now, the general case follows from the same proof provided 6, is 
defined by (4.6) instead of (4.2). 1 

Remark 4.1. Results of Proposition 4.1 are standard in the case q = 2 
and pV bounded below (see for example [2, 14, 271). Schrodinger operator in 
LQ was also defined and studied in [37] where results similar to those of Proposi- 
tion 4.1 are proved in much the same way. 

Remark 4.2. By (3.16), H, is bounded below and (3.2) provides us with 
a lower bound on the bottom, say E, , of its spectrum. Namely we have: 
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IV.2. Schriidinger Operator as Form Sum 

A by now standard way to define perturbed Hamiltonians in mathematical 
physics, and especially in quantum mechanics, is to consider them as self- 
adjoint operators associated to the sum of quadratic forms (see, for example, 
[25, Chapter VI], [40, lo] and [32, Chapter S]). We briefly review this technique 
of definition, and we check that Schrodinger operator defined in this way 
coincides with the self-adjoint infinitesimal generator H, which we introduced 
in secticn III. 

If f and g belong to Ccs(W) let us set: 

(4.9) 

Integrating by parts the right hand side of (4.9) we obtain: 

%(h d = C-4 4 d (4.10) 

where ( , ) denotes theL*-inner product. This proves that the form E,, is closable 
(we will use the same symbol er, to denote the closure). The form domain 
Q(Q) of c0 is the set of elements of L2 the first order derivatives of which (in 
the sense of distributions) are elements of L2. 

Now, let I,’ be a real valued measurable function on W, and let us set: 

On Q(Q) n Q( li) we define the form E by: 

a-7 ‘4 = %(fY g) + ( w d 

where (rf,g) denotes ((sgn D-) 1 I’ Ir’*f, 1 V ll!*g). If we assume further that 1,’ 
possesses a breakup I- = F, - Lr2 such that: 

VI is bounded below and l’-r EL;,, 
(4.11) 

I,-? ELI’ for some p > n/2 if n > 3, p > 1 if n = 2, and p = 1 if ?z = 1 

Then, by [IO, p. 271, E is the form of a unique bounded below self-adjoint 
operator H on L*, the form domain of which is given by Q(H) = Q(Q) n Q(V). 
It is known (see for example [12]) that monotone convergence theorems for 
integrals and for quadratic forms can be used to extend the classical Feynman- 
Kac formula (which is easy to prove for bounded V) to general potential functions 
I,’ which satisfy the above assumptions; namely, for each t > 0, for each f E L* 
and for almost every x E BP we have: 

[ecfHf](x) = E, f(X,) exp 
I 

[ - 1’ l-(&Y,) ds]l . 
-0 
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Consequently, if V E ‘%’ the semigroup generated by H and the semigroup 
P”t ; t > O> studied in Section III coincide and thus their infinitesimal generators 
are identical. The following remarks are designed to compare the results we 
proved to those existing in the literature. 

Remark 4.3. When q = 2 and V E V is bounded below, the result of 
Proposition 4.1 is weaker than [32, Theorem X.321; indeed in this case, the 
very domain of the operator H defined as sum of quadratic forms can be explicitly 
given when I’ EL:,, rather than when V E L$, as we had to assume. 

Remark 4.4. We will assume later on that the infimum of the spectrum 
of H is an eigenvalue. In this case it is very important to know wether or not 
exp[-tH] is positivity improving (i.e. exp[--tH]f > 0 a.e. whenever f 3 0 
a.e. and f f 0). Indeed, when this is true we can conclude that the inftmum 
of the spectrum of H is a simple eigenvalue and that the corresponding 
normalized eigenfunction is positive a.e. . We would like to point out that 
once Feynman-Kac’s formula is known, the positivity improving property 
comes out naturally from the following simple argument: if f E L2 is non- 
negative a.e. it is clear that exp[--tH]f is non-negative a.e. . Moreover, for 
each Bore1 subset rZ of [w”, 

implies that for all x’ such that s: V(X,) ds < +CO W, a.s. we have: 

which implies that A has Lebesgue’s measure zero. This proves that exp[--tH] 
is positivity improving. Furthermore, if rr is assumed to be in L{$j2, the above 
argument shows that exp[--tH]f may be chosen everywhere positive whenever 
f 3 0 and f is not a.e. equal to zero. Consequently, the groundstate (i.e. the 
eigenfunction associated to the inlimum of the spectrum of H) is positive 
and locally bounded away from zero since, by Proposition 3.3 it is known 
to be continuous. We emphasize this simple property because it was used in 
several places (see for example [9]) and p roved to hold under restrictive condi- 
tions by rather lengthy analytical computations. 

Remark 4.5. As before we assume that V possesses a breakup V = 
Vr - V, satisfying (4.11) and such that V, E Li,,, if 11 < 3 and VI E Lgc’,/” if 
7t > 4. Since for all n we have V, E L&,c , we know that --*A + VI defined 
as a sum of operators on Ccm(lRn) is essentially self-adjoint (see [32, Theo- 
rem X.281). By [32, Theorem X.281, its unique self-adjoint extension is nothing 
but -+A + V, defined as sum of quadratic forms. Now, classical Sobolev’s 
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inequalities imply that Va is a small form perturbation of -&I, and thus of 
-40 + k; too (see [lo, Theorem 9.21). Consequently, by [32, Theorem 
X.171, not only we recover the possibility of defining H = --&I + VI - Vs 
as sum of quadratic forms, but we learn that C,ffi(Rn) is a form core for the 
so-obtained bounded below self-adjoint operator. We will need to know 
another form core for H. Namely: 

PROPOSITION 4.2. Let FT be as above and let us assume that # is any non- 
negative function in Q(c,J which is bounded and locally bounded away from zero. 
Then (#f; f E C,~(R”)} is a form core for H. 

Proof. It suffices to prove that for each f E C,“(W) there is a sequence 
{fk ; K 3 l} in C,m(Rn) such that #fk converges to f in the H-graph norm. 
The negative part of V possesses a breakup I’_ = U + W with U bounded 
and W a small form perturbation of -$l + V+ . Consequently we may assume 
that Fe is non-negative. Let us remark that fqF E Q(H) = Q(q,) n Q(V) 
whenever f E C,“(W). Indeed, we have first: 

s,” VW If(x) #-‘(x)1’ dx < IIf+-’ II”, J;,(z,,,, V(x) dx < + ~3 

because # is locally bounded away from zero and V E L&, , and second, for 
each i E {l,..., n>: 

i I R” 
F(x) 1’ dx 

< 2 SUP $W” I,” / & (4 Izdx + 2 IIf+-” II”, jRn 1% 64 12dx 
f (x)+0 I E 

because (I, is locally bounded away from zero and because #J E Q(co). Thereby 
we can find a sequence {fk ; h 2 l} in C,“?(Rn) which converges to f#-l in 
H-graph norm. Since V EL;:,” and since the support of f#-’ is compact, this 
sequence can be obtained by convolution with an approximate identity (see 
the proof of Proposition 4.3 below for a definition), and consequently we may 
assume without any loss of generality that (a) the fk are uniformly bounded, 
(b) their supports are contained in a single compact subset K of W, (c) they 
converge almost everywhere to f$-l. Now, on one hand we have: 

I b-2" If(x) - vWf&l” dx < II # II: s,” If (4 W4 -f&)l" dx 
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which goes to zero when k goes to infinity, and on the other hand: 

which goes to zero when k goes to infinity because first, the sum of the first 
two terms of the above right hand side goes to zero by the boundedness of # 
and the construction of the sequence (fk ; k 3 l} and second, the third term 
goes to zero by Lebesgue’s dominated convergence theorem. This concludes 
the proof. 1 

IV.3. Dirichlet Operators 

The theory of Dirichlet forms and Dirichlet spaces has been initiated by 
Beurling and Deny (see [4, 7]), and has been extensively studied since (see 
for example [15, 16, 38, 39, I], and the references therein). In this subsection 
we will concentrate on Dirichlet forms that are unitary equivalent to the 
quadratic forms associated to the self-adjoint operators we introduced in 
subsection IV. 1. 

Let p be a Bore1 probability measure on W which satisfies: 

dp(x) = e-2h(s) dx (4.12) 

for some real-valued, locally bounded, absolutely continuous function h, 
the first order partial derivatives of which are inL& . If for allfandg in C,m(lJP) 
we set: 

S(f, g) = ; j V(x) * V&4 444, (4.13) 
R” 

integrating by parts the right hand side we obtain: 

S(f,d = (Df?& 

where ( , ), denotes the L*(p)-inner product and where: 

Df=-$Af+-Gh.Vf. 

(4.14) 

By (4.14) 6 is given by a symmetric operator on L2(p) and thus 6 is closable. 
We will use the same symbol 6 to denote the closure of 6, and we will call it 
the Dirichlet form of p. 
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PROPOSITION 4.3. The form domain Q(6) is the set of elements of L’(p) whose 
first order derivatives (in the sense of distributions) are in L2(p). 

Proof. Let f E Q(S) be fixed. There is a sequence {fk ; k > I> in C,O-(W) 
which satisfies: 

F+$fk =f 

in L?(p) and: 

&TX wk - fk 7 fil - fk) = 0. (4.15) 

(4.15) implies that for each i E {l,..., n}, {3fk/& ; K 3 l} is a Cauchy sequence 
in L2(p). Since h is locally bounded, e- 2k is locallv bounded away from zero 
and convergence in L2(p) implies convergence in I$,,, , and thus in the sense 
of distributions. Consequently, %f//axi in the sense of distributions is equal, 
almost everywhere, to the limit in L2(p) of the sequence {ljfk/&rj ; k 3 11. 
Conversely, in order to prove that each function in L2(p) whose first order 
derivatives (in the sense of distributions) are in p(p), is necessarily in Q(S) 
we need to introduce some notations. 

Let {ia ; 01 > 0) be an approximate identity; this means that we have: 

j,(x) = a-“j(a-lx) a>o, XE!lP, 

for some non-negative Cm-function on W j, the support of which is contained in 
E-1, fll”, and which satisfies: 

s Rnj(x) dx = 1. 

Let (0, ; k > l} be a sequence of Cx-functions on W which satisfies: 
0 < ok < 1, e,(x) = 1 if / Y 1 < k, 19,(x) = 0 if 1 x 1 > k + 1 and aO/axi(~) 
is uniformly bounded for x E W, k > 1 and i E {l,..., n}, and for each function v 
on R” let us set #k) = ver for all integers k >, I. 

Let f E L2(p). For each integer k > 1 and each real 0 < 01 < 1, ja t f (p) E 
C,~(rWm) and its support is contained in {X E W; j x 1 < R + 2). Moreover: 

f If --A *f’“’ I’& 
R” 

<2 J-. If(l - e,)l’dp+ 2jRn If’“’ -i*f’“’ I”& 

<2 s {IXl>k) 
IfI"&+ sup 

lsl41;+2 

e-2k(s) f If’“’ -ja*f(k) 12 dx. 
.‘p 
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Thereby, if E > 0 is given, we can choose K large enough to have the first 
term less than c/2 and, once such a K is fixed, we can choose (Y small enough 
to have the second term less than ~12 too. Consequently we can choose a sequence 
of integers {k(h); h 3 I} and a sequence of real numbers (a(h); h > l> which 
satisfy: 

lim k(h) = co and h-m y-T, or(h) = 0, 

and: 

$ llf -h(h) *ftkfh)) IILW = 0. (4.16) 

Let us assume further that the first order derivatives off (in the sense of 
distributions) are in Lo(p). Since: 

the numbers K(h) and or(h) could have been chosen in order to have, in addition 
to (4.16): 

i+i s - + [jach) *f (B(h))] 11 I/ = 0 i = l,..., 71. (4.17) 
z L%d 

Indeed we have: 

I I 
af -- 

wn axi 
aja *f(l”) )‘dp axi 

and if E > 0 is given, we can choose k large enough to have the sum of the first 
two terms less than e/2. Now, once such a K is fixed, we can choose 01 small 
enough to have the sum of the last two terms less than e/2 too because e-2h is 
locally bounded, O,(af/ax,) and f (&/ax,) are in L2 and consequently jW * 
[O,(af/ax,)] and j, * [f(iMJ3xi)] converge in L2 to Ok(af/axi) and f(ZX$JaxJ 
respectively when LY goes to zero. (4.17) is proved, and the conjunction of 
(4.16) and (4.17) proves f E Q(S) and 

a(f>f) = j. I Vf (xl’ 44x). I 
R8” 
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EXAMPLE 4.1. Let I’ = VI - Va with Vr bounded below, V, EL:~‘, 
Va 3 0 and Va E LP for some p > max{l, n/2}. Let us assume that the infimum 
of the spectrum of H, say E, is an eigenvalue, and let us denote by # the corre- 
sponding groundstate eigenfunction. If we define the Bore1 probability measure p 
on W by: 

d/~(x) = Cam dx, (4.18) 

where h = -Log 9, and if we define the operator B by: 

D = C(H - E) C-l, 

where C is the unitary from L2 onto LB(p) defined by: 

cy.J = e?J, VEL2, 

then, B is a positive self-adjoint operator in L*(p), 0 is a simple eigenvalue and 
the constant function Q is the corresponding eigenfunction. In fact a is the 
unique positive self-adjoint operator associated to the closed positive bilinear 
form, say 8, corresponding to E - E in the unitary equivalence C, and con- 
sequently, by Proposition 4.2 C,“(lJV) is a core for 8. 

Now, since 4 is bounded and locally bounded away from zero, h is bounded 
below and locally bounded above. Moreover, since #E Q(Q), the first order 
partial derivatives of h are in L:,, , and consequently we can associate to p 
defined by (4.18) a Dirichlet form, say 6, and a Dirichlet operator, say D. 
Since 6 is defined as the closure of a form the domain of which is C,ffi(Rn) 
and since C,m(Rn) is a form core for 8, in order to prove 6 = 8 (and thus 
D = D) it suffices to prove that 6 and 8 coincide on C,Z(Rn). But, iffE Ccm(lRn) 
we have: 

= (F - El ~4 4 If I”) + W,f) 
= WLf). 

Thus the Dirichlet form and the Dirichlet operator of the groundstate 
measure are unitary equivalent to the Schrodinger form and the Schrodinger 
operator respectively. Similar results were obtained in [l] under conditions 
that seem to be more restrictive than ours. 
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V. HI-PER AND SUPER CONTRACTIVITY OF DIRICHLET SEMIGROUPS 

Let I’ E Lye/’ be a potential of class V and as before let H = H, be either 
the infinitesimal generator of the semigroup (T, ; t > 0} acting in L2, or the 
operator --+A + I’ defined as sum of quadratic forms. As before we assume 
that the in$mum of the spectrum of H, say E, is an eigenvalue. \fT:e denote by # 
the groundstate measure (i.e. &L(X) = I/J(X)” do), by D the Dirichlet operator 
of p and we set h = -Log #. In this section we investigate the hyper and 
supercontractive properties of the Dirichlet semigroup {e-‘r$ t 2 O> on L2(p). 
These properties are defined as follows: 

DEFINITION 5.1 [21, 331. The semigroup (e-fD; t > 0} is said hypercon- 
tractive if for some t > 0 and some r > 2, e-f” is a bounded operator from 
L2(p) into L’(p). It is said supercontractive if for all t > 0, r > 1 and s > 1, 
eefD is a bounded operator from Lr(p) into L”(p). 

In order to tackle the hyper (or super) contractivity problem, we use the 
logarithmic Sobolev inequalities approach which was discovered and proved 
to be relevant by Gross [19]. First let us recall a definition of his: 

DEFINITION 5.2. The operator D is called a Sobolev generator if for some 
real constants c > 0 and y there holds: 

s Iw” If 12Log If I dp < @f,f)u + rllf Ilh + llf II%(u) Logllf llcm (5.1) 

for each f E 9(D). Th e constants c and y are called the Sobolev coefficient and 
the local norm of D. 

Remark 5.1. From Fatou’s lemma, relation (5.1) can be equivalently 
required for f in the form domain Q(D) instead of the operator domain 9(D), 
or simply in any form core of D. 

The relevance of the concept of Sobolev generator to our problem is contained 
in the following: 

PROPOSITION 5.1. (e-“D; t > 0} . h 2s yper (resp. super) contractiwe if and only 
if D is a Sobolev generator (resp. with Sobolev coeficient arbitrarily small). 

Proof. The “only if” part is contained in [19, Example 21. The if part is a 
consequence of the Eckman-Rosen version of Gross’ fundamental result 
[19, Theorem 61 provided we check that the assumption “the set of bounded 
twice continuously differentiable functions with bounded first and second 
derivatives is a core for D” is unnecessary in the present situation. Now, using 
Remark 5.1 and by now standard properties of derivatives in the sense of 
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distributions (see for example [35], or [8, Theorem 3.2]), we can easily push 
Eckman’s version ([9, Lemma 3.31) of [19, Lemma 61 to obtain: 

If TV is a probability measure on W which satisfies: 

for some constants c > 0 and y 2 0, and all f in the set SBl of bounded function 
with Jirst order deriaati~es (in the sense of distributions) in L”(p), then for all r in 
[2, +m[ we hate: 

(1.s.i.) 

for all f in 9, , where f,. = (sgn f) If IT--l and c(r) = cr/2(r - 1). 

Furthermore the proof of [19, Theorem I] applies to the present situation 
once one makes the following two observations: (a) all is needed in the proof 
of [19, Theorem l] is pluging functions f of the form e-““g with g EL=(~) 
in (l.s.i.), (b) e-““g belongs to gr whenever g is in L”(p) because first, e-tD 
is a contraction in LQ) for all r in [l, co] and t > 0, and second, because 
of the conjunction of Proposition 4.3 and the fact that emtDg E Q?(D) C Q(D). 

Consequently we have: 

for all t > 0 and r >, 2. Thus, e-‘D is a bounded operator from L’(p) into 
LS(~) if r > 2 and e Bt!c > (s - l)/(r - 1). This already proves that the semi- 
group G- tD. t 3 0) is hypercontractive if D is a Sobolev generator. Moreover, , 
if the Sobolev coefficient c can be chosen arbitrarily small, the supercontractive 
property is obtained via (5.2), the self-adjointness of D and the semigroup 
property. 1 

Remark 5.2. If D is a Sobolev generator the three following properties 
are equivalent: 

(i) increasing the Sobolev coefficient if necessary, the local norm of D 
can be taken to be zero. 

(ii) there is a gap at the bottom of the spectrum of D. 

(iii) e-fD is a contraction from LQ) into L4(p) for t large. 

The equivalence of(i) and (iii) is due to Gross [19, Example 2 and Theorem 61. 
(ii) +- (iii) is due to Glimm [17] and (iii) 3 (ii) to Simon [42]. 
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LEMMA 5.1. If for some nonnegative constants a and b we have: 

I.~1~<aD+b 

in the sense of quadratic forms on LB(p), then: 

(5.3) 

oi < (n max{l, a, b})-l 3 s 
e~i~l’dp(x) < co. (5.4) 

UP” 

Proof. Let j E {l,..., n} be fixed. Since B E Q(D), by (5.3) we have: 

J xj2 dp(X) < 1 1 x I2 dp(x) < b < + 00. (5.5) 
P P” 

For each integer k 2 1 let us define the function fk on the real line by: 

k if k<x 
fk(x) = 

I 
x if -k < x < k 

-k if x < -k. 

If m 3 I is any integer, by Proposition 4.3 the function f&Q on W is in 
the form domain of D. Consequently, by (5.3) we have: 

I x?fmfl) dp(x) < am2 
*jk 3 I 4k 

x;“- d/.4x) + b 1 fk(xj)2m dp(x) (5.6) 
R” 

where A, = ((3~~ ,..., x,) E W; 1 xi 1 < k). Using (5.5), a simple inductive 
argument and Fatou’s lemma, we can let k go to infinity in (5.6) and obtain: 

s x?(m+l) dp(x) < am2 
UP 3 

j- 
R8” 

xy-1) dp(x) + b s x;“’ dp(x) (5.7) 
W” 

where both sides are finite. Now let c = max(1, a, b}. By a simple inductive 
argument from (5.7) we obtain: 

I x;frnfl) dp(x) < am2(m - l)! cm--i + bm! cm < (m + l)! cm+l, (5.8) 
Iw” 

and from (5.8) and Fatou’s lemma we have: 

because we assumed MC < 1. This concludes the proof of the lemma. fl 
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Remark 5.3. It is possible to manufacture counter examples to prove that 
the converse of Lemma 5.1 is false. 

For later reference we restate [19, Theorem 71. This semi-boundedness 
result was proved by L. Gross in the case of a Sobolev generator with local 
norm zero, but his proof works in the general case and yields: 

LEMnra 5.2. If D is a Sobolev generator with Sobolev coeflcient c and local 
norm y and if U is a real measurable function such that s e” dp < CO, then we have: 

as quadratic forms on L2(p). 

Remark 5.4. From Lemma 5.1 and Lemma 5.2 it follows that, if D is a 
Sobolev generator, the following properties are equivalent: 

(iv) JR ,, ealsl’ dp(x) < co for some positive constant 01 

(v) / .r I2 < a D + b for some real constant a > 0 and b. 

This equivalence, at least when D has a gap at the bottom of its spectrum, 
is essentially due to I. W. Herbst who may have had a different proof. We 
learned this fact from L. Gross (oral communication). 

We next prove that properties (i) to (v) hold whenever D is a Sobolev 
generator. First we need some simple lemma. 

LEMMA 5.3. If D is a Sobolev generator, then D has compact resolvent. 

Proof. Since we have: 

it is possible to choose a sequence (01~ ; j 3 I} of positive numbers which satisfies: 

Now, let us define the function U by: 

u = f CLog “i) 1 (j-1ClrlSj) . 
j=l 

By (5.9) we have Se” dp < co, which implies, by Lemma 5.2 that: 

U < a4 + b, (5.10) 
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for some real constants a, > 0 and b, . Since D is unitary equivalent to H -= 
-+A + I’ via a multiplication operator, (5.10) can be restated in: 

as quadratic forms on L”, and this implies that: 

-$A+U<aH+b (5.11) 

for some constants a > 0 and b. Finally, together with liml,,,, I:(X) = -tcr, 
(5.11) implies the desired conclusion. 1 

Following some suggestion of I. IV. Herbst, L. Gross gave a simple proof 
(oral communication) of the following fact: if D is a Soboler coefficient c and 
local norm zero, the integrability property (iv) holds for all positive 01 that 
satisfy OL < c-l. Consequently we have: 

PROPOSITION 5.2. If D is a Sobolea generator, properties (i) to (v) qf remarks 
5.1 and 5.3 hold: 

Now we prove that hyper and supercontractive properties of the Dirichlet 
semigroup are intimately connected with the exponential decay of the ground- 
state eigenfunction of the Schrodinger operator. The sufficiency of condition 
(5.12) below was already proved and used in the works of J. P. Eckmann, 
J. Rosen and B. Simon (see [9, Theorem 2.1 and Lemma 2.31, [33, Assumptions 
of Theorem 1, 3 and 41, [41, Sect. 71) and our proof mimics that of [33, Theo- 
rem 11. 

PROPOSITION 5.3. D is a Sobolezj generator with Sobolea coe@G-ient c if and 
only if we haae: 

-Log+ <cD+b (5.12) 

as quadratic form on L”(p) for some constant b. 

Proof. By Proposition 5.2 we have # EL 1. Thus, if D is a Sobolev generator 
with Sobolev coefficient c, the function U = -Log + satisfies the assumptions 
of Lemma 5.2 and (5.12) follows. 

Conversely, let us assume that (5.12) is true and let c > 0 be fixed. Because 
of the homogeneity of (5.1) and because of Remark 5.1 it suffices to prove 
(5.1) forf E C,=(W) such that /If Iirz(,,) = E. Let such an f be fixed and let us set: 

A = Ix E IF!“; /f (x)1 > a-1). 

Classical Sobolev’s inequality implies: 

Q, Log(# If I) G k,(+A) 
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as quadratic forms on L2, with k, equal to /) IA Log(+ j f l)/\n/a times the constant 
appearing in classical Sobolev’s inequality. Consequently 12, equals E times a 
constant a, which depends only on n. Furthermore: 

Log If I G 1.4 Log(G If I) - Log4 
< a,(-QA) f c(-&l + b’) + b 

< (c + 2a,)(-y + I-) + b’ 

as forms on Lz. This latter inequality is equivalent to: 

Loglfl <(c+2%)D+b (5.13) 

as forms on L’(p), and pluging f in (5.13) s h ows that D is a Sobolev generator 
with Sobolev coefficient c + 2~z, . Letting E - 0 gives the desired conclusion. 1 

Together with Proposition 5.1, Proposition 5.3 provides us with a device 
to prove that some Schrddinger operators give rise to hyper or supercontractive 
Dirichlet semigroups. In order to prove (5.12) it might be convenient to prove 

-Log 4(X) < d,V&v) + rE:! (5.14) 

: 
or some real constants dr 3 0 and 4 and almost every s in R”. Consequently 

[5, Proposition 4.21 can be used to manufacture examples of T,’ E $’ satisfying 
(5.14) and which could not be captured by the techniques of [9, 33, 411. We 
conclude the present paper with another example for which (5.14) is satisfied. 
More than the particular features of the very example we study, we think 
that the nature of the proof is instructive and could be proved to be useful 
in other situations. 

PROPOSITION 5.4. Let F7 be a potential of class Y which sati$es: 

for some positive real numbers 01, t, a’ and b’, and where 1 x ) %, = maxj,r,. ,.,II / sj ) 
if x = (xl ,..., m,,) E R”. Then, there is a positive constant a for which: 

vx E UP, -Log #(X) ,< a[1 + 1 N 12 + r;(w)]. (5.16) 

Proof. By the local boundedness away from zero of $, the real number: 

~(4 = inf{#(y); I y II .< a> 
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is strictly greater than zero. Now, if x E LP is fixed we have: 

+(x) = etE Ew, ]S(Xt) exp [ -( pi ds] exp [ [ v4X.J ds]} 

by Jensen’s inequality. Equivalently: 

-Log #(x) < --tE - Log 44 - Log J4’,(lXt Ilt < 4 + W,{l Xt Ii0 < E>-’ 
t 

X scs v&4 f M,c.)(Y) A@, 4 Pt-s(z, Y) dz 47 ds (5.17) 0 ‘pp p 

(5.17) gives the desired conclusion because of (5.15) and because: 

for some positive constant a. 1 

Remark 5.5. Even though the technique has proved to be very useful 
in [5], we do not intend to substitute functions of x to t and 0~. That is the reason 
why we did not keep track of the dependence of the constants on t. 

EXAMPLE. We claim that if VI satisfies: 

vx E R”, Q(x) + b, < V,(x) < Q(x) + b, (5.18) 

for real constants a, > 0, a2 > 0, b, and b, and for a polynomial function P of 
the form: 

P(x, ,..., 22,) = 1 uj, ,..,. j xijl ... x> ” (5.19) 
jl.....jn>O 

with all the coefficients ajl,...,j, non-negative, then, (5.16) is satisfied. The proof 
is based on the following: 
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LEMMA 5.4. For each integer j > 0 there is a polynomial Q(o1, p) of global 
degree j, of degree int( j/2) in /I, the only tmrn of degree j being &j, and such that: 
for all real numbers x, y, s and t such that 0 < s < t, if we set: 

Ij(X,Jf) = Ij = J-r & e-(z-s)e/2s e-(z-~)z/2(t-s) &, 

then we have: 

Ij = Qj(st-ly + (t - S) t-lx, s(t - S) t-1) I’ . (5.20) 

Here int(x) stands for the integer part of the real number x. 

Proof. If j > 1 we have: 

+m Ii = I &l@ _ x) e-b-r)*/2a e-(z-Y)a/2(t-s) dz + xlj-l 

--3o 

= s( j - 1) Ij-2 - S(t - S)-l Ij + S( t - S)-l Ij-l + lie1 , 

by an integration by parts. In fact we have: 

Ii = st-l(t - s)(j - 1) Ii-, + (st-ly + (t - s) t-b) lieI if j32 

and: 
I1 = (st-ly + (t - s) t-lx) I, . 

A simple induction argument concludes the proof. 1 

Now, let us assume that V, satisfies (5.18) with P given by (5.19, and let 
us check (5.15). 

< WA& Im < +’ Jbt a2 j,,C. jn ai,. . ..i,(2Ts>-“‘21Wt - s)1-“‘2 

X cl (Czj, + $‘) J+a I&Xi , yi) dyi ds + b2 
--oL 

< @P(x) + 11 (5.21) 

580/33/3-5 
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for some positive constant a, where we used Lemma 5.4, the estimate: 

VwER? ,“<“sl, ye~-Lp+mlQIj(Stely -+ (t - S)t-lX, S(t - S)t-‘) < Cgj -t 9 
..-. 

which holds for some positive constant cyj , and the identity: 

which is nothing but the Chapman-Kolmogorov’s relation. The conjunction 
of (5.21) and of (5.18) concludes the proof of the claim. 

We summarize the above results in the following: 

PROPOSITION 5.5. Let LY be a potential of class I’ which satisjes (5.18) for a 
polynomial function P satisfying (5.19) and: 

limizf 1 x I--pP(~) > 0. 

Then the corresponding Dirichlet operator is a Sobolev generator and the associated 
Dirichlet semigroup is hypercontractive. 
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