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A VARIATIONAL REPRESENTATION FOR CERTAIN
FUNCTIONALS OF BROWNIAN MOTION1

BY MICHELLE BOUE AND PAUL DUPUIS´
University of Massachusetts and Brown University

In this paper we show that the variational representation

!1 21!f ŽW . ! !!log Ee " inf E v ds # f W # v dsH Hs s2½ 5ž /v 0 0

holds, where W is a standard d-dimensional Brownian motion, f is any
Ž$ % d .bounded measurable function that maps CC 0, 1 : ! into ! and the

infimum is over all processes v that are progressively measurable with
respect to the augmentation of the filtration generated by W. An applica-
tion is made to a problem concerned with large deviations, and an
extension to unbounded functions is given.

1. Introduction. In this paper we prove the following variational repre-
sentation formula. Let W be a standard d-dimensional Brownian motion.

Ž$ % d .Then for functions f : CC 0, 1 : ! ! ! that are bounded and measurable,
!1 21!f ŽW . ! !!log Ee " infE v ds # f W # v ds .H Hs s2½ 5ž /v 0 0

In this equation E denotes expectation with respect to the probability space
on which the Brownian motion is defined, and the infimum is over all
processes v that are progressively measurable with respect to the augmenta-

Žtion of the filtration generated by the Brownian motion. The definitions of
progressive measurability and of the augmented filtration are recalled in the

.next section.
Our main interest in this representation is due to its usefulness in deriving

various asymptotic results of a large deviations nature. As is well known,
large deviation theory allows one to characterize the behavior of certain

Ž .exponential functionals which include probabilities as a special case as
various parameters tend to their limits. The asymptotic behavior is shown to
scale exponentially in the parameter, and usually with the coefficient C that
multiplies the parameter represented as the solution to a variational prob-
lem.

The representation stated above can be used to prove such results when-
ever the functional of interest can be expressed as a measurable functional of
a Brownian motion. Examples are integrals of small noise diffusions, inte-
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grals against the occupation measure for reflected diffusions and so on. All
that is required to prove such a result, once one has such a representation in
hand, is the convergence of the variational problems appearing in the repre-
sentation to the limit variational problem that defines C. This can often be

$ %carried out efficiently using weak convergence methods 2 , and an example
that shows how easily one can obtain standard large deviation results is
provided in Section 4. A large number of examples involving various classes

$ %of processes in the discrete time setting are given in 9 .
While the representation formula provides an elegant method for deriving

known results under weak assumptions, the primary motivation for its
development comes from a desire to analyze problems for which the standard
discretization methods of large deviation are awkward. An illustrative exam-
ple is the derivation of large deviation properties of a small noise diffusion

$ %with discontinuous drift 5 . Standard methods for treating such problems
generally rely on discretizing time. This can cause a number of difficulties,
since it is difficult to approximate the continuous time process accurately by a
discrete time analogue in a neighborhood of the discontinuity. The approach
based on the representation given above bypasses the time discretization step
and thus avoids this difficulty.

A second class of problems where standard large deviation methods are not
convenient involves the asymptotic analysis of risk-sensitive stochastic con-

Ž $ %trol problems. Such problems are currently of significant interest see 1 ,
$ % $ % $ % .11 , 14 , 17 , and the references therein . The presence of a progressively
measurable control process makes the burden of detail that results from
discretization rather onerous. Such problems were in fact the main motiva-
tion for the development of the representation, and applications to such

$ %problems will appear elsewhere 4 .
The connection between exponential functionals and variational represen-

tations has been exploited in a number of contexts. The first results in this
$ %area appear to be due to Fleming 10 , who considered functionals of nonde-

generate diffusions that satisfied certain parabolic partial differential equa-
tions and applied a representation to study certain large deviation problems.

$ %Extensions to more general classes of processes were given by Sheu 15 .
$ %More recently, Dupuis and Ellis 9 have obtained representations under very

weak assumptions in discrete time and have applied these representations to
study a variety of large deviation problems. Representations for continuous

$ %time Markov chains were developed in 8 and applied to problems of large
$ %deviations for queueing networks. Also, see 6 for representations for certain

jump processes.
A summary of the paper is as follows. The second section is devoted to

preliminary results and notation. In the third section we state and prove the
representation for bounded functionals of Brownian motion on bounded time
intervals. In Section 4 we specialize the result to the case where f is of the

Ž .form g X , with g a bounded measurable functional of X, and where X is
the sample path of a strong solution to a stochastic differential equation
driven by W. We also show how one can derive the standard large deviation
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asymptotics for small noise diffusions using the representation. In the last
section we show that the representation continues to hold if f is bounded
from above. This extension is especially useful for problems from risk-sensi-

$ %tive control 3 .

2. Preliminaries. Throughout the sequel we shall consider the canoni-
Ž . Ž$ % d . Ž Ž$ % d ..cal probability space ", FF, # , where " " CC 0, 1 : ! , FF " BB CC 0, 1 : !

is the Borel $-algebra and # is d-dimensional Wiener measure. Under # the
$ Ž . Ž . 4coordinate mapping process W " W % " % t , 0 & t & 1 together with the˙t

$ W 4 $ Ž .4filtration FF " $ W ; 0 & s & t is a d-dimensional Brownian motion˙t s
$ 4starting at the origin. We construct the augmented filtration FF by consider-t

$ Ž$ % d . Ž Ž$ % d ..ing the collection of null sets NN " N ' CC 0, 1 : ! : & B ( BB CC 0, 1 : !˙
Ž . 4with N ' B and # B " 0 and defining

FF " $ FFW ) NN , 0 & t & 1.˙ Ž .t t

$ 4Relative to the continuous filtration FF , W is still a d-dimensional Browniant
motion.

REMARK. For notational simplicity, we consider only the time interval
$ %0, 1 . All the results in this paper carry over with only notational changes to

$ %an arbitrary interval 0, T with T " '.

We begin by introducing some basic definitions and notation.

Ž .DEFINITION 2.1. A stochastic process X on ", FF is progressively measur-
$ 4 Ž .able with respect to the filtration FF if for every t the map s, % "t

Ž . Ž$ % Ž$ %. . Ž d Ž d ..X % : 0, t # ", BB 0, t * FF ! ! , BB ! is measurable.s t

DEFINITION 2.2. We denote by AA the set of all vectors of FF -progressivelyt
$ Ž Ž1. Žd .. 4measurable processes v " v " v , . . . , v ; 0 & t & 1 which satisfyt t t

1 2Ž i.v dt d# " ', 1 & i & d.Ž .H H t
dŽ$ % .CC 0, 1 : ! 0

Further, we denote by AA the set of all vectors of bounded FF -progressivelyb t
! !measurable processes, in the sense that there exists M " ' such that v & Mt

$ %for all t ( 0, 1 with probability 1.

Ž .DEFINITION 2.3. A stochastic process X on ", FF is simple if there exist
$ 4C " ', a strictly increasing sequence of real numbers t , i " 0, . . . , j withi
$ 4t " 0 and t " 1, and a sequence of random variables ( , i " 0, . . . , j ! 10 j i

! Ž .!such that ( is FF -measurable for every i, sup max ( % & Ci t % ( " i( $0, . . . , j!14 ii

and
j!1

X % " ( % 1 t # ( % 1 t , 0 & t & 1, % ( " .Ž . Ž . Ž . Ž . Ž .Ýt 0 $04 i Ž t , t %i i#1
i"0

The class of simple processes will be denoted by AA .s
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Note that simple processes are progressively measurable and bounded, and
thus AA + AA .s b

Ž . Ž .DEFINITION 2.4. Let XX , FF be a measurable space, and let PP XX denote
Ž .the set of probability measures defined on it. For # ( PP XX , the relative

Ž . Ž .entropy function R ), # is the mapping from PP XX into the extended real
numbers given by

d*
R * , # " log x * dxŽ . Ž . Ž .˙ H ž /d#XX

Ž .whenever * ( PP XX is absolutely continuous with respect to # and
ŽŽ .Ž .. Ž .log d*-d# x is *-integrable. In all other cases, we set R * , # " '.˙

The following proposition is the starting point for the representation
derived in Theorem 3.1. It states a variational formula involving the relative

Ž $ % .entropy function see, e.g., 9 , Proposition 2.4.2 for a proof .

Ž .PROPOSITION 2.5. Let XX , FF be a measurable space, let f be a bounded
measurable function mapping XX into ! and let # be a probability measure on
XX . The following conclusions hold:

Ž .a We have the variational formula

1 ! log e!f Ž x .# dx " inf R * , # # f x * dx .Ž . Ž . Ž . Ž . Ž .H H½ 5Ž .*(PP XXXX XX

Ž . Ž .b The infimum in 1 is uniquely attained at the probability measure *0
which is absolutely continuous with respect to # and has Radon!Nikodym
derivative

d* 10 !f Ž x .x " e ) .Ž . ˙ !f Ž x .d# H e # dxŽ .XX

We next state two approximation results which will be used in the sequel.
The first result concerns measurable functions as approximated by continu-

Ž$ % .ous functions 7 , Theorem V.16a , and the second concerns progressively
Ž$ %measurable processes as approximated by simple processes 12 , Lemma

.3.2.4 .

Ž .THEOREM 2.6. Let XX , FF, + be a probability space, with XX a Polish space
and FF the associated Borel $-algebra. Let f be a Borel-measurable function

$ 4from this space into !. There is a sequence of continuous functions f , j ( "j
from XX into ! with

lim f " f , +-a.e.j
j!'

If the function f is bounded in absolute value by B, then all the approximating
functions can be taken to be bounded by B as well.
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PROPOSITION 2.7. Let X be a bounded progressively measurable process, in
! Ž .! $ %the sense that X % & B for all % ( " and t ( 0, 1 . Then there exists at

$ n 4 ! nŽ .!sequence X , n ( " of simple processes such that sup X % & B forn( " t
$ %every % ( " and t ( 0, 1 , and also

1 2n! !lim E X ! X ds " 0.H s s
n!' 0

The final result in this section will be needed to justify interchanges of
limits and expectations in several places. It is related to the fact that the level

Ž .sets of R ), # are compact in the ,-topology.

Ž .LEMMA 2.8. Let XX , FF be a measurable space, with XX a Polish space and
FF the associated Borel $-algebra. Let # be a probability measure defined on it
and let f : XX ! ! be a bounded Borel-measurable function. Consider a se-

$ 4 Ž . Ž .quence - , n ( " of measures in PP XX satisfying sup R - , # & . "n n( " n
'. Assume - converges weakly to a probability measure -. Then the follow-n
ing hold:

Ž .a lim H f d- " H f d-;n!' XX n XX
Ž . $ 4b if f , n ( " is a sequence of uniformly bounded functions convergingn

#-a.s. to f, then

lim f d- " f d-.H Hn n
n!' XX XX

PROOF. As a first step we verify that the limit measure - is absolutely
continuous with respect to # . Indeed, by the weak convergence of - to - andn

Ž . Ž $ % .the lower semicontinuity of R ), # see, e.g., 9 , Lemma 2.4.3 ,
R - , # & lim infR - , # & . " '.Ž . Ž .n

n!'

From the definition of relative entropy, this implies that - is absolutely
continuous with respect to # . Theorem 2.6 enables us to find a sequence
˜ ˜$ 4f , j ( " of bounded and continuous functions such that lim f " f ,j j!' j

#-a.e. Since - ! # the limit also holds --a.e. By the dominated convergence
˜ ˜theorem H f d- converges to H f d-. For each fixed j ( ", H f d- con-XX j XX XX j n

˜verges to H f d- because of the weak convergence of - to -. Hence to proveXX j n
Ž .part a of the lemma it only remains to verify

˜$ $2 lim sup f ! f d- " 0.Ž . H j n
j!' XXn("

! ! $ Ž . $ ! !Fix / % 0. Define f " sup f x and let M be such that f & M and˙' 'x( XX
˜! !sup f & M. Then'j( " j

˜ ˜ ˜$ $ $ $ $ $f ! f d- " f ! f d- # f ! f d-H H Hj n j n j n
˜ ˜$ $ $ 4 $ $ $ 4XX f !f %/ f !f &/j j

˜$ $& f ! f d- # /H j n
˜$ $ $ 4f !f %/j

˜$ $& 2M- f ! f % / # / .½ 5n j
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Ž .Since / is arbitrary, 2 will follow if we can show that

˜$ $lim sup - f ! f % / " 0.½ 5n j
j!' n("

Ž .For any c ( 1, ' we have

d-n˜$ $sup - f ! f % / " sup d#½ 5 Hn j d#˜$ $ $ 4f !f %/n(" n(" j

d-n& sup d#H d#˜$ $ $ 4 $ 4f !f %/ . d- -d#&cn(" j n

d-n# sup d# .H d#˜$ $ $ 4 $ 4f !f %/ . d- -d#%cn(" j n

The first term in the last expression converges to 0 as j ! ' since it is
˜$ $ $ 4bounded above by c# f ! f % / . Convergence of the second term to 0j

follows from the upper bound

d-n
sup d#H d#˜$ $ $ 4 $ 4f !f %/ . d- -d#%cn(" j n

1 d- d-n n& sup log d#Hlog c d# d#$ 4d- -d#%cn(" n

1 d- d-n n!1& sup e # log d#H ž /log c d# d#n("

1
!1" e # sup R - , #Ž .nž /log c n("

e!1 # .
& .

log c

Ž . Ž .Since c can be taken arbitrarily large, 2 is established and the proof of a is
complete.

Ž .To prove b , observe that we may write

f d- " f d- # f d- ! f d- .H H H Hn n n n n n½ 5
XX XX XX XX

Ž .Since convergence of the first term to H f d- is a direct consequence of a , weXX
only need to show convergence of the second term to 0. This is done just as in

˜Ž . $ Ž .the proof of 2 but replacing f by f note that the proof of 2 does not usej n
˜%continuity of f . "j

3. The main theorem. We are interested in a representation formula
for the quantity

!log Ee!f ŽW . ,
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Ž$ % d .where f : CC 0, 1 : ! ! ! is a bounded Borel-measurable function. This
formula will be stated in the next theorem. The boundedness assumption is
stronger than needed, but it is included here to simplify the proof. An
extension will be given in Section 5.

THEOREM 3.1. Let f be a bounded Borel-measurable function mapping
Ž$ % d .CC 0, 1 : ! into !. Then

!1 21!f ŽW . ! !!log Ee " inf E v ds # f W # v ds .H Hs s2½ 5ž /v(AA 0 0

PROOF OF THE UPPER BOUND. Consider any v ( AA . Since v is bounded, forb
each 1 & i & d the stochastic integral H t vŽ i. dW Ž i. is well defined and is a0 s s
square integrable martingale. If we define R byt

d
t t 21Ž i. Ž i. ! !3 R " exp v dW ! v ds ,Ž . Ý H Ht s s s2

0 0i"1

then R is a martingale. We define a probability measure * on FF byt v 1

4 * A " R d# for A ( FF .Ž . Ž . ˙ Hv 1 1
A

˜ ˜ ˜ Ž1. ˜ Žd .$ Ž . 4By Girsanov’s theorem the process W " W " W , . . . ,W ; 0 & t & 1t t t
given by

t˜5 W " W ! v dsŽ . Ht t s
0

is a d-dimensional Brownian motion under * . Let T be the map defined byv v

t
T 0 " 0 ! v 0 ds.Ž . Ž .˙ Htv t s

0

Ž$ % d . Ž . Ž !1Ž ..Then, for any Borel set A + CC 0, 1 : ! , # A " * T A .v v
Ž . Ž . Ž .Using the definition of R * , # and substituting 3 and 4 , we obtainv

d*v
R * , # " log 0 * d0Ž . Ž . Ž .Hv vž /d#

d 11 1 2Ž i. Ž i. ! !" v dW ! v ds * d0 .Ž .ÝH H Hs s s v½ 520 0i"1

Ž .Thanks to 5 ,

d d
1 1 12 21v Ž i. Ž i. Ž i.˜ ! !R * , # " E v dW # v ds ! v dsŽ . Ž .Ý ÝH H Hv s s s s2½ 50 0 0i"1 i"16Ž .

1 21v ! !" E v ds ,H s2½ 5
0

where the last equality uses the martingale property of the stochastic inte-
gral and Ev denotes expectation with respect to the probability measure * .v
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Consequently,

!1 21v ˜! !R * , # # f 0 * d0 " E v ds # f W # v dsŽ . Ž . Ž .H H Hv v s s2½ 5ž /0 0

Ž .and from 1 we obtain

!1 21!f ŽW . v ˜! !7 !log Ee & inf E v ds # f W # v ds .Ž . H Hs s2½ 5ž /v(AA 0 0b

Ž .We now use 7 to show that, for any v ( AA,

!1 21!f ŽW . ! !8 !log Ee & E v ds # f W # v ds ,Ž . H Hs s2½ 5ž /0 0

where expectation is with respect to Wiener measure # . The proof proceeds in
three steps.

Step 1. Simple v. Suppose v can be written as

j!1
d$ %v 0 " ( 0 1 t # ( 0 1 t , 0 & t & 1, 0 ( CC 0, 1 : ! ,Ž . Ž . Ž . Ž . Ž . Ž .Ýt 0 $04 i Ž t , t %i i#1

i"0

where ( is FF -measurable for i " 0, . . . , j ! 1. We define a new family ofi t i ˜$ 4random variables ( , i " 0, . . . , j ! 1 as follows:i

(̃ 0 " ( 0 ,Ž . Ž .˙0 0

and for i " 1, . . . , j ! 1,

(̃ 0 " ( 1 ,Ž . Ž .˙i i i

where 1 is any function which agrees withi

i!1
˜0 ! ( 0 t ! tŽ . Ž .Ý k k#1 k

k"0

˜up to time t . Each ( is FF -measurable, so the process v given by˜i i t i

j!1
d˜ ˜ $ %v 0 " ( 0 1 t # ( 0 1 t , 0 & t & 1, 0 ( CC 0, 1 : ! ,Ž . Ž . Ž . Ž . Ž .˜ ˙ Ž .Ýt 0 $04 i Ž t , t %i i#1

i"0

Ž . Ž Ž ..is simple, and thus an element of AA . Moreover, v satisfies v 0 " v T 0˜ ˜b ṽ
˜ !Ž . Ž . Ž .with probability 1. This relation implies that, for W 0 " W 0 ! H v 0 ds˙ ˜0 s

Ž Ž$ % d .. Ž 2Ž$ % d ..and A ( BB CC 0, 1 : ! , B ( BB LL 0, 1 : ! ,

!
˜* W ( A , v ( B " * 0 : 0 ! v 0 ds ( A , v 0 ( BŽ . Ž .Ž .˜ ˜ ˜Hv v s˜ ˜ ½ 5ž /0

" * 0 : T 0 ( A , v T 0 ( B$ 4Ž . Ž .Ž .Ž .v v v˜ ˜ ˜

" # 1 : 1 ( A , v 1 ( B$ 4Ž .Ž .
" # W ( A , v ( B ,Ž .
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˜Ž .which establishes that the distribution of W, v under the measure * is the˜ ṽ
Ž . Ž .same as the distribution of W, v under # . We use this equivalence and 7 to

obtain

!1 21!f ŽW . ṽ ˜! !!log Ee & E v ds # f W # v ds˜ ˜H Hs s2½ 5ž /0 0

!1 21 ! !" E v ds # f W # v ds ,H Hs s2½ 5ž /0 0

Ž . Ž ! .which implies 8 for all v ( AA . Let LL W # H v ds denote the measure ons # 0 s
Ž$ % d . ! Ž .CC 0, 1 : ! that is induced by W # H v ds under # . Using 6 , the equality0 s

in the last display implies that

! 1 21 ! !9 R LL W # v ds # " E v dsŽ . H H# s s2½ 5ž /ž /0 0

for all v ( AA .s
! Ž .!Step 2. Bounded v. Let v ( AA , so that v % & M " ' for 0 & s & 1,b s

% ( ". According to Proposition 2.7, there exists a sequence of simple pro-
$ n 4 ! nŽ .!cesses v , n ( " such that v % & M " ' for all 0 & s & 1 and % ( ",s

and
1 2n! !lim E v ! v ds " 0.H s s

n!' 0

Ž ! n . Ž ! .It follows that W, H v ds converges in distribution to W, H v ds in0 s 0 s
Ž Ž$ % d ..2CC 0, 1 : ! .

By virtue of Step 1, for every n ( ",

!1 21!f ŽW . n n! !10 !log Ee & E v ds # f W # v ds .Ž . H Hs s2½ 5ž /0 0

It remains to show that the inequality above continues to hold in the limit as
Ž ! n . Ž .n ! '. To this end, let - " LL W # H v ds . Then 9 implies that˙n # 0 s

1 M 2
1 2n! !sup R - , # " sup E v ds & " '.Ž . Hn s½ 52 20n(" n("

Ž .Hence we can apply Lemma 2.8 a to obtain

! !
nlim Ef W # v ds " Ef W # v ds .H Hs sž / ž /n!' 0 0

Ž . Ž .Letting n ! ' in 10 we conclude that 8 is valid for the limit process v, and
Ž .thus for any v ( AA . Using the lower semicontinuity of R ), # , we alsob

obtain

! 1 21 ! !11 R LL W # v ds # & E v dsŽ . H H# s s2½ 5ž /ž /0 0

for all v ( AA .b
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Step 3. General v ( AA. We define
n $ % dv 0 " v 0 1 , 0 & s & 1, 0 ( CC 0, 1 : ! .Ž . Ž .˙ Ž .s s $! v Ž0 .! & n4s

n Ž .Then v is bounded for every n ( " and thus Step 2 guarantees that 10
n Ž ! n . Ž .holds for each v . Let - " LL W # H v ds . Then 11 implies that˙n # 0 s

1 12 21 1n! ! ! !sup R - , # & sup E v ds & E v ds " '.Ž . H Hn s s2 2½ 5 ½ 5
0 0n(" n("

Ž .As in Step 2, Lemma 2.8 and the dominated convergence theorem yield 8 for
any v ( AA, which in turn implies the desired upper bound. For use in Section

Ž .5, we note that the lower semicontinuity of R ), # implies that, for all v ( AA,

! 1 21 ! !12 R LL W # v ds # & E v ds .Ž . H H# s s2½ 5ž /ž /0 0

PROOF OF THE LOWER BOUND. Consider the measure * which infimizes in0
Ž .the variational formula 1 . Then * is not only absolutely continuous with0

respect to # , but it is in fact equivalent to # on FF . It follows that, for each1
$ %t ( 0, 1 , the restriction of * to FF is equivalent to the restriction of # to FF .0 t t

Let R be the corresponding Radon!Nikodym derivative. Then R "t t
$Ž . % $ 4E d* -d# / FF , and the process R ; 0 & t & 1 forms a #-martingale that is0 t t

Ž ! ! .bounded from below and above #-a.s. by constants exp !2 f and'

Ž ! ! .exp 2 f , respectively. Moreover, since R is a martingale with respect to' t
the augmentation under # of the filtration generated by a Brownian motion,
it can be represented as the stochastic integral R " 1 # H t u dW , where ut 0 s s s

Ž$ % .is progressively measurable 12 , Theorems 3.4.15!16 . Thanks to the bound-
edness from below of R we can define v " u -R and write˜t t t t

t
13 R " 1 # v R dW .Ž . ˜Ht s s s

0

2 Ž .The process R is uniformly bounded, and thus ER " '. This and 13 yieldt 1
1 ! ! 2 2 Ž ! ! .E H v R ds " '. Because R 0 exp !2 f , #-a.s., this implies˜ '0 s s t
1 ! ! 2E H v ds " ', and since d* -d# is also bounded,˜0 s 0

1 2! !14 v ds d* " '.Ž . ˜H H s 0
dŽ$ % .CC 0, 1 : ! 0

Ž . Ž$ % .These bounds and 13 give 12 , page 191

t t 21 ! !15 R " exp v dW ! v ds .Ž . ˜ ˜H Ht s s s2
0 0

Since R is a martingale, Girsanov’s theorem identifies * as the measuret 0
˜ ! Ž .under which the process W " W ! H v ds is a Brownian motion. Using 14˙ ˜0 s

Ž . Ž . Ž . Ž .and 15 as in 5 ! 6 to evaluate R * , # , we obtain0

!1 21!f ŽW . * 0 ˜! !!log Ee " E v ds # f W # v ds .˜ ˜H Hs s2½ 5ž /0 0
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$ n 4Assume for a moment that f is continuous. Let v , n ( N be a sequence˜
of bounded simple processes such that

1 2* n0 ! !lim E v ! v ds " 0.˜ ˜H s s½ 5n!' 0

! nŽ .!Then given / % 0 there exist n " ' and C " ' such that v % & C fors̃
0 & s & 1, % ( ", and

!1 1 2* 0 ˜! !E v ds # f W # v ds˜ ˜H Hs s½ 5ž /2 0 0
16Ž .

!1 /1 2* n n0 ˜! !0 E v ds # f W # v ds ! .˜ ˜H Hs s½ 5ž /2 20 0

Let us write vn in the form˜
l!1

nv % " ( % 1 t # ( % 1 t , 0 & t & 1, % ( " ,Ž . Ž . Ž . Ž . Ž .˜ Ýt 0 $04 i Ž t , t %i i#1
i"0

where 0 " t " t " ))) " t " 1 and ( is FF -measurable for every i "0 1 l i t i
Ž . Ž$ % d .0, . . . , l ! 1 . For i " 1, . . . , l let MM " CC 0, t ! t : ! and define mea-˙i i i!1

Ž̃ i.surable maps Z : " " MM byi

Ž̃ i. ˜ ˜Z % " W % ! W % , 0 & s & t ! t .Ž . Ž . Ž .˙s t #s t i i!1i!1 i!1

Ž d .lThe continuity of f implies that there exist continuous functions F : ! "1
ŽŽ d .l Ž l ..! and F : ! # Ł MM " ! such that, #-a.s.,2 i"1 i

1 21 n! !F ( , . . . , ( " v dsŽ . ˜H1 0 l!1 s2
0

and
!

Ž1. Ž l . n˜ ˜ ˜F ( , . . . , ( , Z , . . . , Z " f W # v ds .˜Hž /2 0 l!1 sž /0

˜ i Ž̃1. Ž̃ i.Ž . Ž .Define ( " ( , . . . , ( and, for i " 1, . . . , l, let Z " Z , . . . , Z . With˙ ˙0 l!1
Ž .this notation, 16 can be rewritten as

!1 1 2* 0 ˜! !E v ds # f W # v ds˜ ˜H Hs s½ 5ž /2 0 017Ž .
/

* l0 ˜0 E F ( # F ( ,Z ! .Ž .$ 4Ž .1 2 2

Let us observe that each ( can be written as a bounded measurable functioni
Ž̃ j.of Z , j " i. A construction that makes use of the independence of incre-

ments of Brownian motion, this FF -measurability of ( and the smoothingt ii

allowed by Theorem 2.6 gives the existence of a continuous mapping
l Ž d .l2: Ł MM " ! such that the following conclusions hold:i"1 i

Ž . Ž l . Ž Ž 1. Ž l .. ii 2 z can be written in the form 2 , 2 z , . . . , 2 z , where z "̇0 1 l
Ž . iz , . . . , z ( Ł MM ;1 i j"1 j



´M. BOUE AND P. DUPUIS1652

Ž . d ! !ii 2 ( ! is deterministic with 2 & C;0 0
Ž . i d ! Ž .!iii for i " 1, . . . , l, 2 : Ł MM " ! satisfies 2 u & C for u (i j"1 j i

Ł i MM ;j"1 j
Ž .iv we have the inequality

/
* l * l l l0 0˜ ˜ ˜ ˜E F ( # F ( ,Z 0 E F 2 Z # F 2 Z ,Z ! .Ž . Ž . Ž .$ 4Ž . Ž . Ž .½ 51 2 1 2 2

Details of the construction are given in the Appendix. Now define measurable
maps Z Ž i.: " " MM by settingi

Z Ž i. % " W % ! W % , 0 & s & t ! t , i " 1, . . . , l ,Ž . Ž . Ž .˙s t #s t i i!1i!1 i!1

i Ž Ž1. Ž i..and let Z " Z , . . . , Z . Finally define˙
l!1

iv % " 2 1 t # 2 Z % 1 t , 0 & t & 1.Ž . Ž . Ž . Ž .˙ Ž .Ýt 0 $0, t % i Ž t , t %1 i i#1
i"1

By construction, v is a simple process in AA which satisfies
!1 1 2* n n0 ˜! !E v ds # f W # v ds˜ ˜H Hs s½ 5ž /2 0 0

!1 /1 2! !0 E v ds # f W # v ds ! .H Hs s½ 5ž /2 20 0

Ž .Combining this inequality with 17 yields
!1 21!f ŽW . * 0 ˜! !!log Ee " E v ds # f W # v ds˜ ˜H Hs s2½ 5ž /0 0

18Ž .
!1 21 ! !0 E v ds # f W # v ds ! / ,H Hs s2½ 5ž /0 0

which proves the lower bound for continuous f.
$ 4If f is not continuous, let f , j ( " be a sequence of bounded andj

! ! ! !continuous functions such that f & f " ' and lim f " f, #-a.s. The' 'j j!' j
preceding argument applied to each of the functions f implies that therej

j j$ 4 Ž .exists a sequence v , j ( " of processes in AA such that v satisfies 18 for
each j but with f replaced by f ; that is,j

!1 21!f ŽW . j jj ! !19 !log Ee 0 E v ds # f W # v ds ! / .Ž . H Hs j s2½ 5ž /0 0

Ž .Thanks to 9 we have
! 1 21j j! ! ! !supR LL W # v ds # " supE v ds & f .H H '# s s2½ 5ž /ž /0 0j j

! jŽ .It follows from this bound that the pair H v ds,W is tight. Hence there0 s
! jŽ .exists a subsequence such that H v ds,W converges in distribution to0 s

!Ž . Ž .H v ds,W . It follows from 19 , the dominated convergence theorem and0 s
Lemma 2.8 that, for all sufficiently large j,

!1 21!f ŽW . j j! !!log E 0 E v ds # f W # v ds ! 2/ .H Hs s2½ 5ž /0 0
jSince each v is in AA, this completes the proof of the lower bound. "
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4. An application to diffusions. In this section we specialize the result
of Theorem 3.1 to the case of bounded measurable functionals of strong

Ž .solutions to stochastic differential equations Theorem 4.1 . We then apply
this formula to prove a well-known result about large deviations for small
noise diffusions.

Ž . Ž .4.1. The representation formula. Let b t, x and $ t, x , 1 & i & m,i i j
$ % m1 & j & d, be Borel-measurable functions from 0, 1 # ! into !, and define

Ž . $ Ž .4 Ž .the m # 1 vector b t, x " b t, x and the m # d matrix $ t, x "i
$ Ž .4$ t, x . Let v ( AA be given, and consider the stochastic differential equa-i j
tions

20 dX " b t , X dt # $ t , X dW , X " x ,Ž . Ž . Ž .t t t t 0

and

21 dX v " b t , X v dt # $ t , X v v dt # $ t , X v dW , X v " x ,Ž . Ž . Ž . Ž .t t t t t t 0

where x ( !m is deterministic and W is d-dimensional Brownian motion. We
Ž . Ž .assume that 20 and 21 have a unique strong solution. For instance, this is
Ž . Ž .the case if b ), ) and $ ), ) satisfy Lipschitz and linear growth conditions,

that is, there exists a constant K " ' such that

! ! ! ! ! !22 b t , x ! b t , y # $ t , x ! $ t , y & K x ! yŽ . Ž . Ž . Ž . Ž .
and

! ! 2 ! ! 2 2 ! ! 223 b t , x # $ t , x & K 1 # x .Ž . Ž . Ž . Ž .
Ž $ %.However, these conditions can be significantly weakened see 16 .

The next theorem corresponds to Theorem 3.1 for the special case of
diffusions which are strong solutions to stochastic differential equations.

THEOREM 4.1. Let X be the diffusion process that is the unique strong
Ž .solution to the stochastic differential equation 20 . Then for any bounded

Ž$ % m.Borel-measurable function f : CC 0, 1 : ! ! ! the following representation
holds:

1 21!f ŽX . v! !24 !log Ee " inf E v ds # f X ,Ž . Ž .H s2½ 5v(AA 0

v Ž .where X is the unique solution to 21 and E denotes expectation condi-x
tioned on X " x.0

Ž .PROOF. Since X is a strong solution to 20 , there exists a
Ž Ž$ % d .. Ž Ž$ % m.. Ž$ % d .BB CC 0, 1 : ! -BB CC 0, 1 : ! -measurable function h: CC 0, 1 : ! !
Ž$ % m.CC 0, 1 : ! such that

X " h W , #-a.s.Ž . !!

More precisely, the relation

t t$ % $ % $ %h W " x # b s, h W ds # $ s, h W dWŽ . Ž .H Ht s s s
0 0
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$ %is satisfied almost surely with respect to Wiener measure for all t ( 0, 1 .
Ž . !f # h$W %Hence the left-hand side of 24 can be rewritten as !log Ee . Repre-

Ž . $ ! % vsentation 24 will be established once we verify that h W # H v ds " X .0 s
This follows easily from the strong existence and the uniqueness of solutions:

˜ !letting W " W # H v ds, we have0 s

t t˜ ˜ ˜ ˜$ % $ % $ %h W " x # b s, h W ds # $ s, h W dWŽ . Ž .H Ht s s s
0 0

t t˜ ˜$ % $ %" x # b s, h W ds # $ s, h W dWŽ . Ž .H Hs s s
0 0

t ˜$ %# $ s, h W v ds,Ž .H s s
0

Ž . $ ! % vand, by the uniqueness of solutions to 21 , this implies h W # H v ds " X .0 s
"

4.2. Small noise diffusions. As an elementary but elegant application of
Theorem 4.1, we prove the following well-known theorem on large deviations
for small noise diffusions. A more demanding problem for which the represen-
tation seems to be very useful, concerns diffusion processes with discontinu-

$ % $ %ous coefficients 5 . For a discrete time analogue, see 9 , Chapter 7.
We will use the concept of a Laplace principle, which we now define.

$ /4DEFINITION 4.2. Let Y be a family of random variables taking values in
$ %a Polish space YY and let I: YY ! 0, ' .

$ /4We say the sequence Y satisfies a Laplace principle with rate function I
if, for every bounded continuous function g mapping YY into !,

/g YŽ .
lim ! / log E exp ! " inf g y # I y ,$ 4Ž . Ž .½ 5//!0 y(YY

$ . $ Ž . 4and if for every M ( 0, ' the set y: I y & M is compact.

Ž . Ž .Let b ), ) and $ ), ) be as in the previous subsection, and for / % 0
consider the stochastic differential equation

25 dX / " b t , X / dt # / 1-2$ t , X / dW , 0 & t & 1, X / " x .Ž . Ž . Ž .t t t t 0

/ Ž Ž$ % m. Ž Ž$ % m...Let * be the measure induced by X on CC 0, 1 : ! , BB CC 0, 1 : ! ./ , x
As / ! 0, the measure * converges weakly to the Dirac measure concen-/ , x
trated at the single trajectory which solves the ordinary differential equation

0̇ " b t , 0 , 0 " x .Ž .t t 0

$ /4Theorem 4.3 states the Laplace principle for the family X . A Laplace
$principle is equivalent to a large deviation principle if the definition of a rate

Ž$ % .%function includes the requirement of compact level sets 9 , Section 2.2 . It
thus measures the probability of deviations away from the trajectory 0.
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Ž . Ž . Ž . Ž . $ /4THEOREM 4.3. Let b ), ) and $ ), ) satisfy 22 and 23 . Then X , the
Ž . Ž$ % m.solution to 25 , satisfies the Laplace principle in CC 0, 1 : ! with rate

function

1 21 ! !I f " inf v dtŽ . Hx t2
2 m t t$ Ž$ % . Ž . Ž . 4 0v(L 0, 1 : ! : f "x#H b s , f ds#H $ s , f v dst 0 s 0 s s

$ 2Ž$ % m. t Ž . t Ž . 4whenever v ( LL 0, 1 : ! : f " x # H b s, f ds # H $ s, f v ds & !,t 0 s 0 s s
Ž .and I f " ' otherwise.x

PROOF OF THE LOWER BOUND. Fix x ( !m and let g be any bounded and
Ž$ % m.continuous function mapping CC 0, 1 : ! into !. We will prove the Laplace

principle lower bound

/g XŽ .
26 lim inf ! / log E exp ! 0 inf g 0 # I 0 .$ 4Ž . Ž . Ž .x x½ 5 m//!0 Ž$ % .0(CC 0, 1 : !

$ /4It suffices to show that every subsequence of X has a subsubsequence
Ž .satisfying 26 . Since g is bounded, we can assume that along the given

subsequence
/g XŽ .

!/ log E exp !x ½ 5/

converges. Applying Theorem 4.1 to the function g we obtain

/g X 1Ž . 1 2 / , v! !!/ log E exp ! " inf E v ds # g X ,Ž .Hx x s½ 5½ 5/ 2v(AA 0

where X / , v is the unique solution to

t t t/ , v / , v / , v 1-2 / , vX " x # b s, X ds # $ s, X v ds # / $ s, X dW .Ž . Ž . Ž .H H Ht s s s s s
0 0 0

For every / let v/ ( AA come within / of the infimum, so that

/g X 1Ž . 1 /2/ / , v! !!/ log E exp ! 0 E v ds # g X ! / .Ž .Hx x s½ 5½ 5/ 2 0

1 21 /$ ! ! 4Tightness of H v ds follows immediately from the fact that, for all0 s2
1 21 /$ ! ! 4 ! !/ % 0, E H v ds is bounded above by 2M, where M " g . Given the'x 0 s2

1 2 /1 / / , v$ ! ! 4tightness of H v ds , the tightness of X is standard. We would0 s2
$ /4 2Ž$ % m.lastly like to show tightness of v in LL 0, 1 : ! under the weak topol-

2Ž$ % m.ogy. A slight nuisance here is the fact that LL 0, 1 : ! is not metrizable as
a Polish space with this topology. However, for any N " ', the set

1 22 m ! !$ %S " f ( LL 0, 1 : ! : f ds & NŽ . HN s½ 5
0
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Ž$ %is metrizable as a compact Polish space with this topology 13 , Theorem
.III.1 . For a given 3 % 0, consider the set K " S . Then by Chebyshev’s˙ 2 M-3

inequality, for all / % 0,

2M 3 11 12 2/ / /! ! ! !$ 4# v $ K " # v ds % & E v ds " 3 .H Hs s½ 5 ½ 53 2M 20 0

Ž . /This implies modulo an approximation argument which we will omit that v
can be assumed to take values in a compact Polish space with probability 1.

Ž / , v / / .Hence there exists a subsubsequence for which X , v converges in
Ž v . vdistribution to X , v , where X is the unique solution to

t tv v vX " x # b s, X ds # $ s, X v ds.Ž . Ž .H Ht s s s
0 0

Since g is bounded and continuous, applying Fatou’s lemma to this subsubse-
quence yields

/g XŽ .
lim inf ! / log E exp !x ½ 5//!0

1 1 /2/ / , v! !0 lim inf E v ds # g X ! /Ž .Hx s½ 52/!0 0

1 1 2 v! !0 E v ds # g XŽ .Hx s½ 52 0

1 1 2! !0 inf v ds # g 0Ž .H s½ 5t t 2$ Ž . Ž . Ž . 4 0I v , 0 : 0 "x#H b s , 0 ds#H $ s , 0 v ds1 t 0 s 0 s s

0 inf I 0 # g 0 .$ 4Ž . Ž .xmŽ$ % .0(CC 0, 1 : !

Ž .Compactness of level sets. The fact that I ) has compact level sets followsx
from the compactness of S for each N, and the continuity of the map v " 0N

t Ž . t Ž .defined by 0 " x # H b s, 0 ds # H $ s, 0 v ds.t 0 s 0 s s

PROOF OF THE UPPER BOUND. We now prove
/g XŽ .

27 lim sup ! / log E exp ! & inf I 0 # g 0 .$ 4Ž . Ž . Ž .x x½ 5 m/ Ž$ % .0(CC 0, 1 : !/!0

Ž$ % m.Fix 3 % 0. For any g bounded and continuous there exists 0 ( CC 0, 1 : !
such that

3
I 0 # g 0 & inf I 0 # g 0 # " '.$ 4Ž . Ž . Ž . Ž .x xm 2Ž$ % .0(CC 0, 1 : !

For such 0, choose v such that˜
1 31 2! !v ds & I 0 # ,Ž .˜H s x2 20
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t t / , ṽŽ . Ž .and 0 " x # H b s, 0 ds # H $ s, 0 v ds. For 0, v and X as above,˜ ˜t 0 s 0 s s
Theorem 4.1 implies

/g XŽ .
lim sup ! / log E exp !x ½ 5//!0

1 1 2 / , v! !" lim sup inf E v ds # g XŽ .Hx s½ 52v(AA 0/!0

1 1 2 / , ṽ! !& lim supE v ds # g XŽ .˜Hx s½ 52 0/!0

1 1 2 / , ṽ! !" v ds # lim supE g XŽ .˜H s x2 0 /!0

3
/ , ṽ& I 0 # # lim supE g X .Ž . Ž .x x2 /!0

/ , ṽSince g is bounded and continuous and X converges in distribution to 0,
the inequalities can be continued as

3
I 0 # # g 0 & inf I 0 # g 0 # 3 .$ 4Ž . Ž . Ž . Ž .x xm2 Ž$ % .0(CC 0, 1 : !

Ž .Since 3 is arbitrary, the proof of 27 is complete. "

5. Extensions of the representation. The following extension is
$ %needed for applications to risk-sensitive control 4 .

THEOREM 5.1. Let f be a Borel-measurable function that is bounded from
above. Then

!1 21!f ŽW . ! !!log Ee " inf E v ds # f W # v ds .H Hs s2½ 5ž /v(AA 0 0

PROOF. Without loss of generality we may assume f & 0. Let f " f 1N
Ž .!N . Then by the monotone convergence theorem and Theorem 3.1 we have

!log Ee!f ŽW . " lim ! log Ee!fN ŽW .

N!'

!1 21 ! !" lim inf E v ds # f W # v ds .H Hs N s2½ 5ž /N!' v(AA 0 0

It remains to verify that the last expression coincides with

!1 21 ! !28 inf E v ds # f W # v ds .Ž . H Hs s2½ 5ž /v(AA 0 0

Ž .We first treat the case when 28 is finite. Fix / % 0 and choose v ( AA to be˜
1 21Ž . ! !/-optimal in 28 . The nonpositivity of f implies E H v ds " '. By the˜0 s2
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Ž $ Ž ! .4.monotone convergence theorem applied to E !f W # H v ds˜N 0 s

!1 21 ! !lim inf E v ds # f W # v dsH Hs N s2½ 5ž /N!' v(AA 0 0

!1 21 ! !& lim E v ds # f W # v ds˜ ˜H Hs N s2½ 5ž /N!' 0 0

!1 21 ! !" E v ds # f W # v ds˜ ˜H Hs s2½ 5ž /0 0

!1 21 ! !& inf E v ds # f W # v ds # / .H Hs s2½ 5ž /v(AA 0 0

Since / is arbitrary, the upper bound follows.
Ž .For the case when 28 is equal to !', we choose v ( AA such that˜

1 21 !$ ! ! Ž .4E H v ds # f W # H v ds has an arbitrarily large negative value. The˜ ˜0 s 0 s2

same argument as above gives us the desired upper bound. Finally, we note
that the lower bound is elementary, since f 0 f. "N

APPENDIX

In this section we provide details for the proof of the lower bound in
Theorem 3.1. We first state a lemma concerning measurable selections.

LEMMA A.1. Let E , E be Polish spaces and let f : E # E " ! be1 2 1 2
bounded and continuous. Let K be a compact set in E . For each x ( E define2 1

2 " y ( K : inf f x , y " f x , y .Ž . Ž .˙ ½ 5x 0
y (K0

Ž .Then there exists a Borel-measurable function g: E " E such that g x ( 21 2 x
for all x ( E .1

We now prove the existence of a function 2 satisfying the properties
Ž . Ž . Ž .i ! iv stated below 17 .

Since every probability measure on a Polish space is tight, there exists a
compact set K + !d such that0

/
* l l l * l l l l0 0˜ ˜* lE F ( # F ( ,Z 0 E 1 ( F ( # F ( ,Z ! .Ž . Ž . Ž .$ 4Ž . Ž .Ž .½ 51 2 ŽK . 1 20 4 l

˜ ˜ ˜Ž .Since W , FF is a Wiener process under * , W ! W is independent of FFt t 0 u u u2 1 1
Ž̃ j. j ˜ j!1Ž .for 0 & u & u & 1. Therefore, Z is independent of ( ,Z under * . Let1 2 0

- denote standard Wiener measure on MM and let F Ž1. be the real-valuedj j 2
d l l!1 ˜Ž l .ŽŽ . Ž ..continuous map on ! # Ł MM obtained by integrating out Z fromj"1 j

Ž1.Ž . Ž . Ž . ŽŽ d .l Ž l!1 ..F , that is, F y " HF y, z - dz , where y ( ! # Ł MM . Using˙2 2 2 l j"1 j
! ! d ŽŽ d .l!1the fact that ( & C, #-a.s., and Lemma 6.1 with E " ! , E " !˙ ˙l!1 2 1

Ž l!1 .. $ d ! ! 4 Ž1.# Ł MM , K " K . x ( ! : x & C and f " F # F , we obtain˙ ˙j"1 j 0 1 2
ŽŽ d .l!1 Ž l!1 .. dthe existence of a measurable function h: ! # Ł MM " ! withj"1 j

! ! Ž .h & C such that the right-hand side of 17 is bounded below by'

/
* l!1 l!1 l!1 Ž1. l!1 l!1 l!1 l!10 ˜ ˜ ˜E F ( , h ( ,Z # F ( , h ( ,Z ,Z ! .Ž . Ž .½ 5Ž . Ž .1 2 2 l
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Thanks to Lemma 2.6 and the dominated convergence theorem, we can take
h to be continuous if we subtract an additional /-2 l from this lower bound.

If we iterate this procedure l ! 1 times, we obtain the existence of a
l Ž d .l Ž . Ž .continuous mapping 2: Ł MM " ! such that the conclusions i ! ivi"1 i

Ž .stated below equation 17 hold.
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