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Introduction

As Dembo and Zeitouni point out in the introduction to their monograph on the subject [1],
there is no real theory of large deviations, but a variety of tools that allow asymptotic analysis
of small probability.

To give an idea of what kind of large deviations we are talinkg about, let us consider a sequence
of independent identical distributed real valued random variables X1, X2, � , Xn with mean zero
and unit variance. Let Ŝn = 1

n

∑
i=1
n Xi the empirical sums. The weak law of large numbers says

that for any δ > 0,

P(|Ŝn|� δ)�n→∞ 0 (1)

The central limit theorem is a refinement that says

P( n
√

Ŝn∈ [a, b])�n→∞
1
2π

√
∫

a

b

e−x2/2dx.

In the case Xj∼N (0, 1), we have Ŝn∼N(0, 1/n), and we can compute explicitly

P(|Ŝn|� δ)= 1− 1
2π

√
∫
−δ n

√

δ n
√

e−x2/2d x.

therefore (exercise)

1
n
logP(|Ŝn|� δ)�n→∞− δ2

2
(2)

Equation (2) is an example of a large deviation statement. Roughly it says that asymptotically
in n→+∞, P(|Ŝn|� δ)� e−nδ2/2.

Cramér’s Theorem in R

Let {Xn} sequence of i.i.d. random variables on R with common probability distribution α(dx).
We define the moment generating function

M(λ)=E
[
eλX1

]
=

∫
R

eλxα(dx) (3)

and let us assume that there exists λ∗ > 0 such that M(λ) < ∞ if |λ| < λ∗. Notice that, since
|x| � λ−1(eλx + e−λx) for any λ > 0, this condition implies that X1 is integrable and we denote
m = E(X1) ∈R. It is easy to see that m = M ′(0). We are interested in the logarithmic moment
generating function

Λ(λ) = logE
[
eλX1

]
(4)

By Jensen’s inequality, we have Λ(λ) � λm > −∞. Let DΛ = {λ ∈R: Λ(λ) < + ∞}. Under our
hypothesis, 0∈DΛ

o (the interior of DΛ).

Lemma 1. The function Λ is convex and continuously differentiable in DΛ
o , moreover

Λ′(λ)= E(X1eλX1)
M(λ)

λ∈DΛ
o .

1



Proof. For any α∈ [0, 1], it follows by Hölder inequality

E(e(αλ1+(1−α)λ2)X1)� M(λ1)αM(λ2)1−α

and consequently

Λ(αλ1 + (1−α)λ2)� αΛ(λ1)+ (1−α)Λ(λ2).

The function fε(x) = (e(λ+ε)x − eλx)/ε converges point-wise to x eλx, and |fε(x)|� eλx(eδ|x|− 1)/
δ � eλx(eδx + e−δx)/δ = h(x), for every |ε|� δ. For any λ ∈DΛ

o , there exists a δ > 0 small enough
such that E(h(X1)) � M(λ + δ) + M(λ − δ) < + ∞. Then the result follows by the dominated
convergence theorem. �

Using the same argument one can prove that Λ ∈ C∞(DΛ
o ). Computing the second derivative we

obtain

Λ′′(λ)= E(X1
2eλX1)

M(λ)
−

(
E(X1eλX1)

M(λ)

)2

� 0

by Jensen inequality. Observe that Λ′′(0) = Var(X1). To avoid the trivial deterministic case, we
assume that Var(X1)> 0. It follows that Λ′′(λ)> 0 for any λ∈DΛ

o , i.e. Λ( · ) is strictly convex.

We define the rate function as the Fenchel-Legendre transform of Λ

I(x) = sup
λ∈R

{λx−Λ(λ)} (5)

It is immediate to see that I is convex (as supremum of linear functions) and that I(x) � 0. Fur-
thermore we have that I(m) = 0. In fact by Jensen’s inequality M(λ) � eλm for any λ ∈ R, so
that λm−Λ(λ)� 0 and it is equal to 0 for λ= 0. We conclude that I(m)= 0.

Consequently m is a minimum of the convex positive function I(x). It follows that I(x) is non-
decreasing for x �m and non-increasing for x �m.

Observe that if x > m and λ < 0 then λx−Λ(λ)� λm−Λ(λ) and that implies

I(x)= sup
λ�0

{λx−Λ(λ)} x > m (6)

Similarly one obtains

I(x)= sup
λ�0

{λx−Λ(λ)} x < m (7)

Here are other important properties of I:

Lemma 2. I(x)→+∞ as |x|→∞, and its level sets are compact.

Proof. If x > m, for any positive λ+ ∈ DΛ, I(x)/x � λ+ − Λ(λ+)/x and limx→+∞ Λ(λ+)/x = 0,
so we have limx→+∞ I(x)/x � λ+. A similar argument for x < m gives limx→−∞ I(x)/|x|� |λ−|.
Consequently the level sets {x∈R: I(x) � a} are bounded, and closed by continuity of I. �

We denote DI = {x∈R: I(x)<∞}.

Lemma 3. We have x∈DI
o iff P(X1 > x) > 0 and P(X1 < x) > 0. For any x∈DI

o there exists a
unique λx∈DΛ

o such that x = Λ′(λx) and I(x)= λxx−Λ(λx).
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Proof. Consider Fx(θ) = θx − Λ(θ) = − logE[eθ(X1−x)]. For any ε > 0 sufficiently small we have
P(X1 > x+ ε)> 0 and P(X1 < x− ε) > 0. Assume x > m and θ � 0 then we can estimate

logE[eθ(X1−x−ε)] � logE[eθ(X1−x−ε)1X1>x+ε] � logP(X1 >x + ε)

so we have I(x + ε) = supθ�0 Fx+ε(θ) < + ∞. By monotonicity we have I(y) < + ∞ for any m <
y <x + ε so x∈DI

o. A similar reasoning works for x < m.

Assume now that P(X1 > x) = 0 then for all ε > 0 P(X1 < x + ε) = 1 and E[eθ(X1−x−ε)] → 0 for
θ→+ ∞ which gives Fx+ε(θ)→ +∞ and then I(x + ε) = + ∞. Since this is true for every ε > 0
we conclude that x∈DI

o.

For fixed x∈DI the function Fx is C2(R) and since x∈DI
o we have that it exists ε > 0 for which

x + ε ∈DI
o and so θ(x + ε)− ∆(θ) � I(x + ε) < + ∞ which gives Fx(θ) � I(x + ε)− εθ→−∞ for

θ → + ∞. Similarly Fx(θ) � I(x − ε) + εθ →−∞ for θ →−∞. Then Fx has a unique maximum
at a finite θ = λx and Fx

′(λx) = 0, Fx
′′(λx) < 0. It follows that I(x) = λx x − Λ(λx) and that x =

Λ′(λx). �

We are ready to prove the following theorem, which is a large deviation statement for the empir-
ical mean of a sequence of iid variables.

Theorem 4. (Cramér) For any Borel set A⊂R,

− inf
x∈Ao

I(x)� liminf
n→∞

1
n
logP(Ŝn∈A)� limsup

n→∞

1
n
logP(Ŝn∈A) �− inf

x∈Ā
I(x)

were Ao is the interior of A and Ā is the closure of A.

Proof.

Upper bound

Let us start with A a closed interval of the form Jx = [x, + ∞) and let x > m. Then the expo-
nential Chebycheff’s inequality gives for any λ > 0

P(Ŝn � x) � e−nλxE[e
∑

i=1
n λXi] = e−nλxM(λ)n = e−n(λx−Λ(λ))

Since λ > 0 is arbitrary, we can optimize the bound and obtain for x > m

P(Ŝn � x)� exp(−n sup
λ>0

{λx−Λ(λ)}) = exp(−nI(x)) (8)

where we use (6) in the last equality. Similarly for x < m we obtain

P(Ŝn � x)� exp(−n sup
λ<0

{λx−Λ(λ)}) = exp(−nI(x)) (9)

Consider now an arbitrary closed set C ⊂R. If m ∈ C, then IC = infx∈C I(x) = 0 and the upper
bound is trivial. If m∈C let x− = sup {x ∈ C : x < m} and x+ = inf {x ∈ C : x > m} and observe
that by closedness x±∈C and that{Ŝn ∈C}⇒ {Ŝn � x+ or Ŝn � x−}. We have also x− < m < x+

and from the monotonicity of I(x) on ( −∞, x−] and [x+, + ∞), IC = min (I(x−), I(x+)). Con-
sequently, using (8) and (9),

P(Ŝn∈C) �P(Ŝn � x+)+P(Ŝn �x−)� e−nI(x+) + e−nI(x−) � e−nIC
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and

1
n
logP(Ŝn∈C) �− IC + 1

n
log 2 (10)

which concludes the upper bound.

Lower bound

Given an open set G, it is enough to prove that for any x∈G

liminf
n→∞

1
n
logP(Ŝn∈G) �− I(x).

To this end, it is enough to prove that for any x and any δ > 0,

liminf
n→∞

1
n
logP(Ŝn∈Bx,δ)�− I(x)

where Bx,δ = (x − δ, x + δ). Clearly it is enough to consider x ∈R such that I(x) < ∞. Assume
x ∈ DI

o. Then by Lemma 3 there exists a unique λx ∈ DΛ
o such that I(x) = λxx − Λ(λx) and x =

Λ′(λx). Let us define the probability law on R

αλx(dy)= eλxy−Λ(λx)α(dy)

Notice that ∫
y αλx(dy)= Λ′(λx)= x

Assuming x � m, we have also that λx � 0. Let An,δ = {(x1, � , xn): (x1 + � + xn)/n ∈ Bx,δ} ⊂
Rn, then for δ1 <δ

P(Ŝn∈Bx,δ)�
∫

An,δ1

α(dx1)�α(dxn)

=
∫

An,δ1

e−λx(x1+�+xn)−nΛ(λx)αλx(dx1)�αλx(dxn)

� e−nλx(x+δ1)−nΛ(λx)

∫
An,δ1

αλx(dx1)�αλx(d xn)

If x < m, we have λx < 0, and in the last step of the above we will have x − δ1 instead of x + δ1.
By the law of large numbers, for any δ1 > 0

∫
An,δ1

αλx(dx1)�αλx(d xn)�n→∞ 1

so that

liminf
n→∞

1
n
logP(Ŝn∈Bx,δ)�− [λx(x+ δ1)−Λ(λx)] =− I(x)−λxδ.

For any δ1 < δ we thus have

liminf
n→∞

1
n
logP(Ŝn∈Bx,δ) � liminf

n→∞

1
n
logP(Ŝn∈Bx,δ1) =− I(x)−λxδ1.
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and since δ1 < δ is arbitrary, we can let δ → 0, and this finish the proof. The proof for an arbi-
trary x is completed by observing that if x∈DI

o then either P(X1 > x) = 0 or P(X1 < x) = 0.
Assume that P(X1 < x) = 0 then Fx(λ) = λx − Λ(λ) = − logE[eλ(X1−x)] is a decreasing function
of λ and

I(x)= sup
λ<0

{λx−Λ(λ)}=− lim
λ→−∞

logE[eλ(X1−x)]

But for any ε > 0

logP(X1 = x)� logE[eλ(X1−x)] � logP(X1 < x+ ε)+ eλεlogP(X1 � x+ ε)→ logP(X1 < x+ ε)

and taking ε→ 0 we get I(x) =− logP(X1 = x). Then we have

P(Ŝn∈Bx,δ)�P(X1 = x,� , Xn = x)=P(X1 = x)n

and then

liminf
n→∞

1
n
logP(Ŝn∈Bx,δ)� logP(X1 = x) =− I(x)

concluding the proof. �

Remark 5. Notice that the proof contains the non-asymptotic bound (10), i.e.

∀n � 1, P(Ŝn∈C)� 2e−ninfx∈CI(x) (11)

also called Chernoff’s bound.

Remark 6. The lower bound was obtained by using the change of variable in conjunction with
the law of large numbers for the new probabilities. One can get better bound by using the cen-
tral limit theorem, and obtain the following corollary

Corollary 7.

lim
n→∞

1
n
logP(Ŝn �x)=− I(x) if x >m

lim
n→∞

1
n
logP(Ŝn �x)=− I(x) if x <m

(12)

Proof. By the central limit theorem∫
{x1+� +xn/n∈[x,x+δ1)}

αλo(dx1)�αλo(dxn)�n→∞
1
2

So in the proof of the lower bound one can substitute (x− δ, x + δ) with [x, x + δ). Since P(Ŝn �
x)�P(Ŝn∈ [x, x+ δ)) one obtains

liminf
n→∞

1
n
logP(Ŝn � x) �− I(x)

The upper bound follows from the one in theorem 4. �
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Example 8.

1. Let α be the gaussian distribution with density

1
2πσ2

√ e−(x−m)2/2σ2

then I(x) = (x − m)2/2σ2. In this case one can compute it directly, since Ŝn − n m has
law N (0, σ2/n).

2. α = 1

2
(δ0 + δ1) (Bernoulli). Then M(λ)= 1

2
(1+ eλ) and

I(x) =x log x +(1− x)log (1− x)+ log 2 if x∈ [0, 1]

and I(x) =+∞ otherwise.

3. For the exponential law α(d x) = βe−βx1x�0 d x, we have M(λ) = β/(β − λ) for − ∞ <
λ < β, otherwise M(λ)= +∞. Then

I(x)= βx− 1− log (βx) if x > 0

and I(x) =+∞ if x� 0.

4. If ξ in a random variable with law N (0, 1/β), then ξ2 has law χ2(1), i.e. a gamma law
Γ(1/2, β/2), which has density

β1/2

2
√

Γ(1/2)
x−1/2e−βx

Its moment generating function is M(λ) = (β/(β − 2λ))1/2 if λ < β/2, otherwise equal to
+∞. The rate function results

I(x) = 1
2
{βx− log (βx)− 1} if x > 0

and +∞ if x < 0.

Long rare segments in random walks

Consider the random walk S0 = 0, Sn =
∑

i=1
n Xi, n � 1, where (Xn)n�1 is a sequence of iid

random variables taking values in Rd, d � 1. Let Rm be the maximal size of the intervals in
which the empirical mean of the Xs belongs to some fixed measurable set A⊂Rd:

Rm =max {�: ∃0� � � k � m, (Sk −Sk−	)/�∈A}

and similarly, let Tr be the first time when the empirical mean over stretches of size at least r
belongs to A:

Tr = inf {n : ∃r � � �n, (Sn −Sn−	)/�∈A}.

Clearly Tr is a stopping time for all r � 0. Note moreover that {Rm � r}⇔ {Tr � m}. We want
to prove the following result.

Theorem 9. Assume that A is such that

lim
n→+∞

− 1
n
logP(Ŝn∈A)= IA (13)
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exists. Then almost surely

lim
m→+∞

Rm

logm
= lim

r→+∞

r

log Tr
= 1

IA
.

Proof. Let Ck,	 = {(Sk −Sk−	)/�∈A}, then

P(Tr � m)�
∑
k=0

m ∑
	=r

k

P(Ck,	)=
∑
k=0

m ∑
	=r

k

P(Ŝ	 ∈A)� m
∑
	�r

P(Ŝ	∈A).

Assume IA∈ (0, +∞) then for all 0 <ε <IA and r large enough, by (13) we have

P(Tr �m)� m
∑
	�r

e−	(IA−ε) �m e−r(IA−ε)Cε

and letting m = �er(IA−2ε) we get

∑
r�1

P(Tr � er(IA−2ε)− 1)�
∑
r�1

er(IA−2ε)e−r(IA−ε)Cε =
∑
r�1

e−rεCε < +∞

and by Borel-Cantelli

liminf
r→+∞

logTr

r
� IA− 2ε , a.s.

Being ε arbitrary we obtain that the liminf is � IA. If IA = + ∞ the proof is complete. Other-
wise to establish the reverse inequality we consider the probability of the event {Tr > m} for
large m. Now

{Tr � m}= {Rm � r}⊇∪1�k<m/r Ckr,r

and the family of events (Ckr,r)1�k�m/r are independent so for all ε > 0 and r large enough

P(Tr > m)� 1−P(∪1�k<m/r Ckr,r)=P(∩1�k<m/r Ckr,r
c )

=
∏

1�k<m/r

(1−P(Ckr,r)) = (1−P(Ŝr ∈A))�m/r�� e−�m/r�P(Ŝr∈A)

� e−�m/r�e−r(IA+ε)

so choosing m such that m = er(IA +2ε) we get∑
r�1

P(Tr > er(IA +2ε))�
∑
r�1

exp(− (er(IA +2ε)/r − 1)e−r(IA+ε)) �
∑
r�1

exp(1− er ε/r)< +∞

and exploiting again the Borel-Cantelli lemma we obtain

limsup
r→+∞

log Tr

r
� IA + 2ε a.a.

which finally allows us to conclude that

lim
r→+∞

log Tr

r
= IA, a.s.
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and by the duality of the events {Tr � m} and {Rm � r} we obtain also the corresponding state-
ments for Rm. �

Remark 10. Condition (13) is a typical consequence of large deviation statements. If Λ is the
logarithmic mgf of X1 by Cramér’s theorem the limit in (13) exists whenever

IA = inf
x∈Ao

Λ∗(x)= inf
x∈Ā

Λ∗(x).

Bibliography

[1] Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications, volume 38 of Applications
of Mathematics (New York). Springer-Verlag, New York, second edition, 1998.

[2] R. Durrett. Probability: Theory and Examples. Duxbury Press, third edition, 2005.

[3] Ivar Ekeland and Roger Temam. Convex analysis and variational problems. North-Holland Publishing
Co., Amsterdam, 1976. Translated from the French, Studies in Mathematics and its Applications,
Vol. 1.

8


