[M. Gubinelli | M2 EDPMAD/TSI | Grandes deviations | poly 2 | v.1 20100127]

Topological preliminaries

The space $C(\mathcal{K})$ of continuous functions on \mathcal{K} is a separable Banach space (complete, normed, linear space) when endowed with the supremum norm $||f|| = \sup_{x \in \mathcal{K}} |f(x)|$.

Remark 1. Recall the following. A topological space is compact if any cover of it by open sets admit a finite sub-cover. A topological space is separable if it has a countable dense set. A compact metric space is separable (Proof. For every $n \ge 1$, by compactness, there exists a finite cover of balls of radius 1/n. The set of all the centers of such balls is countable and dense.)

The separability of $C(\mathcal{K})$ is a consequence of the Stone-Weierstrass theorem. Recall that the Weierstrass theorem says that polynomials are dense among continuous functions on [0, 1] (there exists a nice probabilistic proof of this fact).

Theorem 2. (Stone-Weierstraß) Let $\mathcal{A} \subseteq C(\mathcal{K})$ be an algebra which separates the points of \mathcal{K} (i.e. such that for any $x, y \in \mathcal{K}$ there exists $f \in \mathcal{A}$ such that $f(x) \neq f(y)$) and such that $1 \in \mathcal{A}$. Then \mathcal{A} is dense in $C(\mathcal{K})$.

Proof. We need to prove that $\overline{\mathcal{A}} = C(\mathcal{K})$ or equivalently that we can approximate arbitrary function $f \in C(\mathcal{K})$ by an algebraic construction involving only functions in \mathcal{A} . We will prove that for any f and any $\varepsilon > 0$ we can find $g \in \overline{\mathcal{A}}$ such that $f < g < f + \varepsilon$ this will be enough to conclude since then $||f - g|| \leq \varepsilon$. The construction has three parts.

First we need to show that if $f, g \in \mathcal{A}$ then max $(f, g) \in \overline{\mathcal{A}}$. Since max (f, g) = (|f + g| + |f - g|)/2 it is enough to prove that $f \in \mathcal{A} \Rightarrow |f| \in \overline{\mathcal{A}}$. But by Weierstrass approximation theorem, for every $\varepsilon > 0$ there exists a polynomial P_{ε} : $[-1, 1] \to \mathbb{R}$ such that $\sup_{-1 \leq x \leq 1} ||x| - P_{\varepsilon}(x)| \leq \varepsilon$ which give us that $||f - ||f|| P_{\varepsilon}(f/||f||)| \leq \varepsilon$ and since ε is arbitrary that $||f| \in \overline{\mathcal{A}}$.

Second we use the separation property of \mathcal{A} . Fix $x \in \mathcal{K}$. For any $y \in \mathcal{K}$, $y \neq x$ there exists a function $h_{x,y} \in \mathcal{A}$ such that $h_{x,y}(x) \neq h_{x,y}(y)$ and we can always choose this function so that $h_{x,y}(x) = f(x) + \varepsilon/2$ and $h_{x,y}(y) = f(y) - \varepsilon/2$ (by a linear transformation using the fact that $1 \in \mathcal{A}$). Let $U_{x,y} = \{z \in \mathcal{K} : h_{x,y}(z) < f(z) + \varepsilon\}$ then $\{x, y\} \in U_{x,y}$ and $\bigcup_{y \neq x} U_{x,y} = \mathcal{K}$ so $\{U_{x,y}\}_{y \neq x}$ is a cover of \mathcal{K} by open sets (since $h_{x,y}$ and f are continuous). By compactness we can extract a finite sub-cover $\{U_{x,y_i}\}_{i=1,\ldots,n}$ and for any $z \in \mathcal{K}$ we have $h_{x,y_i}(z) < f(z) + \varepsilon$ for any $i = 1, \ldots, n$. Then $g_x(z) = \max_i (h_{x,y_i}(z)) \in \overline{\mathcal{A}}$ and $g_x < f + \varepsilon$ on \mathcal{K} .

Third step is to consider the open sets $V_x = \{z \in \mathcal{K} : g_x(z) > f(z)\}$. By construction $x \in V_x$ since $g_x(x) = f(x) + \varepsilon/2$. So $\{V_x\}_{x \in \mathcal{K}}$ is an open cover of \mathcal{K} and invoking compactness again we can extract a finite subcover $\{V_{x_i}\}_{i=1,\dots,m}$. At this point we let $g(z) = \max_i g_{x_i}(z) \in \overline{\mathcal{A}}$ and note that g(z) > f(z) for all $z \in \mathcal{K}$ and since $g_x < f + \varepsilon$ for all x we get $f < g < f + \varepsilon$.

Theorem 3. If \mathcal{K} is a compact metrizable space then $C(\mathcal{K})$ is separable.

Proof. Take the functions $f_{x,n}(z) = (1 - nd(x, z))_+$. These functions are continuous, positive and $f_{x,n}(z) = 0$ if d(x, z) > 1/n, moreover the sets $V_{x,n} = \{z : f_{x,n}(z) > 0\}$ are open and $x \in V_{x,n}$ so for every $n \ge 1$ the family $\{V_{x,n}\}_{x \in \mathcal{K}}$ is an open cover of \mathcal{K} and by compactness we can extract a finite subcover $\{V_{x_i^n,n}\}_{i=1,\dots,N_n}$, by collecting all the subcovers we can form a countable set of functions $\{f_{x_i,n_i}\}_{i\ge 1}$ for which $n_i \to \infty$ when $i \to \infty$. This set separates the points in \mathcal{K} . Indeed if $x \neq y \in \mathcal{K}$ then d(x, y) = c > 0 and thus for *i* large enough there exists a function f_{x_i,n_i} such that $f_{x_i,n_i}(x) > 0$ and $f_{x_i,n_i}(y) = 0$. Taking all polynomials of these functions we get an algebra which is still countable and which separates the points, so by the Stone-Weierstrass theorem it is dense in $C(\mathcal{K})$. **Remark 4.** Separability can fail for different reasons. Note that metric spaces that are not separable cannot be compact.

- 1. In the large. If the ambient space is not compact separability needs not to hold in general. A basic example of non-separable space is the Banach space of all bounded sequences indexed by \mathbb{N} : $\ell^{\infty} = \{a = (a_n)_{n \ge 1} : ||a|| = \sup_n |a_n| < +\infty\}$. To see why, note that for any $A \subseteq \mathbb{N}$ we can set $a_n^A = 1_{n \in A}$ and then $a^A \in \ell^{\infty}$ but $||a^A a^B|| = 1 \Leftrightarrow A \neq B$ which means that the exists an uncountable infinity of points which are at distance 1. No countable set can be used to approximate all these points at the same time.
- 2. In the small. The space $L^{\infty}([0, 1], dx)$ with the topology induced by the sup norm is not separable. Just observe that for any $\delta > 0$ and any $x \in [\delta, 1 \delta]$ the functions $f_x(z) = 1_{z \in B_{x,\delta}}$ are such that $||f_x f_y|| = 1$ if $x \neq y$ and that they are uncountable. Like in ℓ^{∞} , the topology here is too sensible to the details.
- 3. For any $1 \leq p < \infty L^p([0, 1], dx)$ is separable. A probabilistic argument follows. Consider the probability space [0, 1] with the Borel σ -algebra \mathcal{F} and the σ -algebras \mathcal{F}_n generated by dyadic intervals of size 2^{-n} . Observer that $\mathcal{F}_{\infty} = \mathcal{F}$. Then for any $\varphi \in L^p$ we can consider the martingale $\varphi_n = \mathbb{E}[\varphi|\mathcal{F}_n]$ and by the martingale convergence theorem we have that $\varphi_n \to \varphi$ in L^p . It is enough then to approximate \mathcal{F}_n measurable real bounded functions by \mathcal{F}_n measurable bounded functions with values in \mathbb{Q} which is a countable subset of $L^p([0,1], dx)$.

We denote $\Pi(\mathcal{K})$ the set of all Borel probability measures on \mathcal{K} . Any $\mu \in \Pi(\mathcal{K})$ defines a linear functional on $C(\mathcal{K})$ by integration: $f \mapsto \int_{\mathcal{K}} f(x)\mu(\mathrm{d}x)$. By abuse of notation we will still denote by μ this functional, so $\mu(f) = \int_{\mathcal{K}} f(x)\mu(\mathrm{d}x)$. It is a positive linear functional $(f \ge 0 \Rightarrow \mu(f) \ge 0)$ and moreover $\mu(1) = 1$. Actually there is a one-to-one correspondence between such functionals and Borel probability measures on \mathcal{K} .

Theorem 5. (Riesz-Markov) For any positive linear functional ℓ on the space $C(\mathcal{K})$ there exists a unique Borel measure μ on \mathcal{K} such that

$$\ell(f) = \int_{\mathcal{K}} f(x) \mu(\mathrm{d}x).$$

For a proof see [Reed and Simon, Functional analysis, vol 1, Academic Press, Th IV.14 and IV.18].

Remark 6. In the Riesz-Markov theorem compactness is necessary. Consider the functional ℓ : $C_b(\mathbb{R}) \to \mathbb{R}$ ($C_b(\mathbb{R})$ is the space of bounded continuous functions) defined as $\ell(f) = \lim_{x \to +\infty} f(x)$ when the limit exists and extended by the Hanh-Banach theorem to a linear functional on the whole $C_b(\mathbb{R})$. It is clear that a measure μ representing ℓ does not exist, in some sense ℓ is concentrated "at infinity".

A sequence of elements $\mu_n \in \Pi(\mathcal{K})$ weakly converge to $\mu \in \Pi(\mathcal{K})$ if $\mu_n(f) \to \mu(f)$ for all $f \in C(\mathcal{K})$. Endowed with the topology associated to this convergence the space $\Pi(\mathcal{K})$ is metrizable, complete and separable, it is then a Polish space. A possible metric is determined by the countable dense set $\{f_n\}_{n \ge 1} \subseteq C(\mathcal{K})$ as follows

$$d(\mu,\nu) = \sum_{n \ge 1} \frac{|\mu(f_n) - \nu(f_n)|}{2^n \, \|f_n\|}.$$

Exercise 1. Verify that it is a metric. Prove that $d(\mu_n, \mu) \to 0 \Leftrightarrow \mu_n(f) \to \mu(f)$. Hint: $|\mu_n(f) - \mu(f)| \leq 2||f_k - f|| + |\mu_n(f_k) - \mu(f_k)| \leq 2||f_k - f|| + 2^k ||f_k|| d(\mu_n, \mu)$. Some other remarks on semi-continuous functions. If A is an open set the function $1_A(x)$ is not continuous but it is lower semi-continuous.

Lemma 7. A function $\varphi \colon \mathcal{K} \to \mathbb{R}$ is lower semi-continuous (lsc) iff the following equivalent statements hold:

- a) For all $x_k, x \in \mathcal{K} \operatorname{liminf}_k \varphi(x_k) \ge \varphi(x)$.
- b) For all $c \in \mathbb{R}$ the set $\{x : \varphi(x) \leq c\}$ is closed.
- c) The function φ is the supremum of a family of continuous functions.
- d) There exists $f_n \in C(\mathcal{K})$ such that $f_n(x) \uparrow \varphi(x)$ for all $x \in \mathcal{K}$.
- e) For each x, $\lim_{\varepsilon \to 0} \inf_{y \in B_{x,\varepsilon}} \varphi(y) = \varphi(x)$ where $B_{x,\varepsilon} = \{y: d(x,y) \leq \varepsilon\}$.

Proof. Exercice. (d) \Rightarrow (c) trivial; (c) \Rightarrow (b) easy; (b) \Rightarrow (a) consider $\{y \in \mathcal{K} : f(y) \leq f(x) - \varepsilon\}$; (a) \Rightarrow (d) consider $f_n(x) = \inf_{y \in \mathcal{K}} (\varphi(y) + n d(x, y))$.

Remark 8. Analogous properties hold for upper semi-continuous functions (usc) φ (which are such that $-\varphi$ is lower semi-continuous).

Exercise 2. Show that a lsc function attains its minimum (Prove it using compactness). Show that if g is lsc and f is non-decreasing (and continuous) then $f \circ g$ is lsc.