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Topological preliminaries

The space C(K) of continuous functions on K is a separable Banach space (complete, normed,
linear space) when endowed with the supremum norm ‖f ‖= supx∈K |f(x)|.

Remark 1. Recall the following. A topological space is compact if any cover of it by open sets
admit a finite sub-cover. A topological space is separable if it has a countable dense set. A com-
pact metric space is separable (Proof. For every n � 1, by compactness, there exists a finite
cover of balls of radius 1/n. The set of all the centers of such balls is countable and dense.)

The separability of C(K) is a consequence of the Stone-Weierstrass theorem. Recall that the
Weierstrass theorem says that polynomials are dense among continuous functions on [0, 1] (there
exists a nice probabilistic proof of this fact).

Theorem 2. (Stone-Weierstraß) Let A ⊆C(K) be an algebra which separates the points of K
(i.e. such that for any x, y ∈ K there exists f ∈ A such that f(x) � f(y)) and such that 1 ∈ A.
Then A is dense in C(K).

Proof. We need to prove that Ā = C(K) or equivalently that we can approximate arbitrary
function f ∈ C(K) by an algebraic construction involving only functions in A. We will prove
that for any f and any ε > 0 we can find g ∈ Ā such that f < g < f + ε this will be enough to
conclude since then ‖f − g‖� ε. The construction has three parts.

First we need to show that if f , g ∈ A then max (f , g) ∈ Ā . Since max (f , g) = (|f + g | + |f −
g |)/2 it is enough to prove that f ∈A⇒ |f | ∈ Ā . But by Weierstrass approximation theorem, for
every ε > 0 there exists a polynomial Pε: [ − 1, 1] → R such that sup−1�x�1 ||x| − Pε(x)| � ε

which give us that ‖f −‖f ‖Pε(f/‖f ‖)‖� ε and since ε is arbitrary that |f | ∈ Ā .

Second we use the separation property of A. Fix x ∈ K. For any y ∈ K, y � x there exists a
function hx,y ∈ A such that hx,y(x) � hx,y(y) and we can always choose this function so that
hx,y(x) = f(x) + ε/2 and hx,y(y) = f(y)− ε/2 (by a linear transformation using the fact that 1∈
A). Let Ux,y = {z ∈K : hx,y(z) < f(z) + ε} then {x, y} ∈Ux,y and ∪y� x Ux,y =K so {Ux,y}y�x is
a cover of K by open sets (since hx,y and f are continuous). By compactness we can extract a
finite sub-cover {Ux,yi}i=1,� ,n and for any z ∈ K we have hx,yi(z) < f(z) + ε for any i = 1, � , n.
Then gx(z)=maxi (hx,yi

(z))∈ Ā and gx < f + ε on K.

Third step is to consider the open sets Vx = {z ∈ K : gx(z) > f(z)}. By construction x ∈ Vx since
gx(x) = f(x) + ε/2. So {Vx}x∈K is an open cover of K and invoking compactness again we can
extract a finite subcover {Vxi

}i=1,� ,m. At this point we let g(z) =maxi gxi
(z)∈ Ā and note that

g(z)> f(z) for all z ∈K and since gx < f + ε for all x we get f < g < f + ε. �

Theorem 3. If K is a compact metrizable space then C(K) is separable.

Proof. Take the functions fx,n(z) = (1 − nd(x, z))+. These functions are continuous, positive
and fx,n(z) = 0 if d(x, z) > 1/n, moreover the sets Vx,n = {z : fx,n(z) > 0} are open and x ∈ Vx,n

so for every n � 1 the family {Vx,n}x∈K is an open cover of K and by compactness we can
extract a finite subcover {Vxi

n,n}i=1,� ,Nn, by collecting all the subcovers we can form a count-
able set of functions {fxi,ni}i�1 for which ni →∞ when i→∞. This set separates the points in
K. Indeed if x � y ∈ K then d(x, y) = c > 0 and thus for i large enough there exists a function
fxi,ni such that fxi,ni(x) > 0 and fxi,ni(y) = 0. Taking all polynomials of these functions we get
an algebra which is still countable and which separates the points, so by the Stone-Weierstrass
theorem it is dense in C(K). �
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Remark 4. Separability can fail for different reasons. Note that metric spaces that are not sep-
arable cannot be compact.

1. In the large. If the ambient space is not compact separability needs not to hold in gen-
eral. A basic example of non-separable space is the Banach space of all bounded
sequences indexed by N: �∞ = {a = (an)n�1 : ‖a‖ = supn |an| < + ∞}. To see why, note
that for any A ⊆N we can set an

A = 1n∈A and then aA ∈ �∞ but ‖aA − aB‖ = 1 ⇔ A � B
which means that the exists an uncountable infinity of points which are at distance 1. No
countable set can be used to approximate all these points at the same time.

2. In the small. The space L∞([0, 1], dx) with the topology induced by the sup norm is not
separable. Just observe that for any δ > 0 and any x ∈ [δ, 1 − δ] the functions fx(z) =
1z∈Bx,δ

are such that ‖fx − fy‖ = 1 if x � y and that they are uncountable. Like in �∞,
the topology here is too sensible to the details.

3. For any 1 � p < ∞ Lp([0, 1], dx) is separable. A probabilistic argument follows. Consider
the probability space [0, 1] with the Borel σ-algebra F and the σ-algebras Fn generated
by dyadic intervals of size 2−n. Observer that F∞ = F . Then for any ϕ ∈ Lp we can con-
sider the martingale ϕn = E[ϕ|Fn] and by the martingale convergence theorem we have
that ϕn → ϕ in Lp. It is enough then to approximate Fn measurable real bounded func-
tions by Fn measurable bounded functions with values in Q which is a countable subset
of Lp([0, 1], dx).

We denote Π(K) the set of all Borel probability measures on K. Any µ ∈ Π(K) defines a linear
functional on C(K) by integration: f �

∫
K f(x)µ(dx). By abuse of notation we will still denote

by µ this functional, so µ(f) =
∫

K f(x)µ(dx). It is a positive linear functional (f � 0 ⇒ µ(f) �
0) and moreover µ(1) = 1. Actually there is a one-to-one correspondence between such func-
tionals and Borel probability measures on K.

Theorem 5. (Riesz-Markov) For any positive linear functional � on the space C(K) there
exists a unique Borel measure µ on K such that

�(f)=
∫
K

f(x)µ(dx).

For a proof see [Reed and Simon, Functional analysis, vol 1, Academic Press, Th IV.14 and
IV.18].

Remark 6. In the Riesz-Markov theorem compactness is necessary. Consider the functional �:
Cb(R) → R (Cb(R) is the space of bounded continuous functions) defined as �(f) =
limx→+∞ f(x) when the limit exists and extended by the Hanh-Banach theorem to a linear
functional on the whole Cb(R). It is clear that a measure µ representing � does not exist, in
some sense � is concentrated “at infinity”.

A sequence of elements µn ∈ Π(K) weakly converge to µ ∈ Π(K) if µn(f) → µ(f) for all f ∈
C(K). Endowed with the topology associated to this convergence the space Π(K) is metrizable,
complete and separable, it is then a Polish space. A possible metric is determined by the count-
able dense set {fn}n�1⊆C(K) as follows

d(µ, ν)=
∑
n�1

|µ(fn)− ν(fn)|
2n ‖fn‖

.

Exercise 1. Verify that it is a metric. Prove that d(µn, µ) → 0 ⇔ µn(f) → µ(f). Hint:
|µn(f)− µ(f)|� 2‖fk − f ‖+ |µn(fk)− µ(fk)|� 2‖fk − f ‖+ 2k‖fk‖d(µn, µ).
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Some other remarks on semi-continuous functions. If A is an open set the function 1A(x) is not
continuous but it is lower semi-continuous.

Lemma 7. A function ϕ: K → R is lower semi-continuous (lsc) iff the following equivalent
statements hold:

a) For all xk, x∈K liminfk ϕ(xk)� ϕ(x).

b) For all c∈R the set {x: ϕ(x)� c} is closed.

c) The function ϕ is the supremum of a family of continuous functions.

d) There exists fn∈C(K) such that fn(x)↑ϕ(x) for all x∈K.

e) For each x, limε→0 infy∈Bx,ε ϕ(y)= ϕ(x) where Bx,ε = {y: d(x, y)� ε}.

Proof. Exercice. (d)⇒ (c) trivial; (c)⇒ (b) easy; (b)⇒ (a) consider {y ∈ K : f(y) � f(x) − ε};
(a)⇒ (d) consider fn(x) = infy∈K (ϕ(y)+ nd(x, y)). �

Remark 8. Analogous properties hold for upper semi-continuous functions (usc) ϕ (which are
such that − ϕ is lower semi-continuous).

Exercise 2. Show that a lsc function attains its minimum (Prove it using compactness). Show
that if g is lsc and f is non-decreasing (and continuous) then f ◦ g is lsc.
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