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The Large Deviation Principle
Here we investigate general properties of large deviation phenomena. For the moment we will
restrict ourselves to probability measures on a compact metrizable space K (a compact Polish

space). Later we will try to remove the compactness hypothesis (for example to be able to
handle measures on R!).

LD-convergence

For any p € II(K) we define the semi-norm || f|r(,) = [(] fIP)]P on C(K). It satisfy ||1]| =1,
|FI<lgl= 1 FllLen < lgllzeem (1)
and

.92 0= |max (£, 9)l| e <2VPmax (|| fll e, 191 o). (2)

Exercise 1. Prove these inequalities.

Exercise 2. Fix 1 < p <+ oo. Show that the following two statements are equivalent:
a) Vf € C(K), 1 lLe(u) = I1f 1o
b) pn— p weakly

for all g, p € II(K). Convergence of LP norms for all continuous functions is then equivalent to
weak convergence. (b) = (a) is easy. For the reverse implication use f=|g|P —|h|?.

Let us be given a sequence (fn)n>1 for probabilities, assume that there exists a sequence of pos-
itive numbers (py)n>1 with p, — 4 0o such that

lim HfHLp"(/l"n)
n

exists for all f € C(K). Then this limit is another semi-norm on C(K) which we denote by || f]|+.
It will satisfy ||1]|«=1, the inequality (1) and

[[max (f, g) ||« < max (|[f[] [lg]l+)

for all f,geC(K).

Definition 1. A sequence (un)n>1 of probability measures on a compact metrizable space K is
said LD-convergent if the limit

lon | £ 2oy = 1L [l
n

exists for all f e C(K).
Theorem 2. Let |||« be a semi-norm on C(K) satisfying for all f, g€ C(K)

<1, [FI<lgl= Il <lgll« and [[max(f, g)[l. <max([[f ]l l[g]]+)- (3)



Let TI: K — [0, 1] such that 1/11(x) =sups|.<1 f(x) then the function II is usc and
[[f 1l = max [| f () I(z)] (4)
zel
(supremum is reached by upper semi-continuity).

Proof. 1/II(x) is the supremum of continuous functions so it is Isc. Let us prove eq. (4). It is
enough to consider f > 0. By definition 1> II(z) f(z) for all z € K and f >0 such that || f|l. <1
this implies that || f||« = II(z) f(z) for all f and then || f|l. = sup, {II(z)f(z)}. To prove the
reverse inequality let C'y = maxgex [f(2)II(x)] so for all z, f(z) < Cy/II(z) and so there exist g
with [|g]|« <1 such that f(z) < Cfg(x)+e. By continuity of f and g this continues to hold in a
neighborhood of x and by repeating the argument and by the compactness of K it is possible to
find a finite number of functions {gx}x=1,.. n such that ||gr|l« <1 and f(z) < Cymaxy gp(z)+¢
for all x € K. Now by the properties of the semi-norm we have

11 < Cllmax gl + = < Cpmaxgull +2 < Cy+e
and by the arbitrariness of € we can conclude. O

Exercise 3. Assume that II;, I3 £ — [0, 1] are upper semi-continuous. Prove that if
maxg ek [| f(@)|H1(z)] = maxgex [| f(2)|Ha(z)] for all f € C(K) then ITI; = IIo. (Hint: use f(z) =
(1— Md(x,xg))4+ for large M assuming that Iy(xg) < a(x0)).

It is suggestive to introduce the lower semi-continuous function I: K — Ry such that II(x) =
e~ 1@ Such a function is called a rate function. It defines a semi-norm on C(K) by

=m —1(=)],
|7l =max | (@)l

Definition 3. The sequence (pn)n>1 satisfy a LDP (large deviation principle) with a rate func-
tion I:K— Ry (lower semi-continuous) if, for all f € C(K),

lim [| £
n

L™ (pn) = HfHI
Then we have proved that

Corollary 4. If (pn)n>1 is LD-convergent then it satisfy the LDP with one and only one rate
function I given by I(x)=logsup s, <1 f().

Theorem 5. Let {Nyp}n>1 be a sequence of norms satisfying Np(1) < 1 and |f| < |g| =
No(f) € Nun(g). There there exists a converging subsequence {N}} C {N,}, i.e. such that
lim,, N),(f) = Ni(f) exists for every f € C(K).

Proof. Take a sequence N,, of such semi-norms. Note that N, (f) <||f|loo since | f| < || f]|co- Let
{fr}r>1 be a countable dense set in C'(K) for the sup norm. Take a subsequence {N;} C {N,}
so that S(fx) = lim,, N,,(fx) exists for every k. For every f take £ such that || f — f¢||co <& and
note that INA(f) — NACH| < INACF — fo)l + INA(Fo) — Nl + INEfe — )] < 2 + [NJ( ) —
Ni(fo)l — 2¢ for n, k — oo. The sequence {N,(f)} is Cauchy for every f and we denote
N (f) =lim, N'(f) its limit. O

Remark 6. In fact the space of all semi-norms N: C(K) — Ry satisfying N(1) < 1 and |f] <
lg|= N(f)<N(g)is a compact metrizable space. (Without proof)



Exercise 4. Let £ = [0, 1] and u, the Lebesgue measure for every n > 1. Prove that (pn)n>1
satisfy the LDP with rate function I(z)=0.

Exercise 5. Let K =0, 1] and pq € II(K) given by pq(dz) = (o + 1)x*dz. Prove that each of
the following sequences are LD-convergent and find the related rate functions: (fin)n, (f2n)n,

(:unz)m (N\/ﬁ)n

Exercise 6. Prove that if (u,), is LD-convergent with rate I, then (uay), is LD-convergent
with rate 21. (Hint: || f | Lr(us,) = H|f|1/2||LG(mn))

Exercise 7. Let K = [0, 1] and (un)n & sequence satisfying the LDP with rate function I(z) =
log(1/x). Prove that u,([0,0.5]) < 0.6™ for all n sufficiently large. (Hint: take f such that f(x)=
1in [0,0.5] and f(z)=0 in [0.55, 1]).

Exercise 8. Prove that infix 7 =0 (Hint: try f =1). Prove that for every e > 0, pu,({z: I(x) <
e}) —1 for n— oo. (Hint: first prove it for I continuous using the Markov inequality and f =e’,
then use the fact that any lsc function is the point-wise limit of an increasing sequence of con-
tinuous functions).

Back to probabilities

Lemma 7. Let pn, o: K— R and p,Te point-wise, then supx ¢n Tsupk ¢. If onle and ¢n, ¢
are usc then maxi @, | maxy ¢.

Proof. First statement. For every € > 0 take z such that ¢(z) > supx ¢ — &/2 and n such that
on(z) > @(x) — €/2 then supk ¢, > supx ¢ — €. Second statement. Let ¢ = lim,, maxx ¢,. For
every € > 0 the sets {x: ¢, () > ¢ — £} form a decreasing sequence of non-empty closed sets. By

compactness some z belongs to all the sets, thus ¢(x) =lim, ¢,(z) > ¢ — e and maxi p >c —e.
O

Exercise 9. Semicontinuity is necessary in the second statement of the previous lemma. Find a
counter-example.

Lemma 8. Let f:X—R, f>0

a) If f is lsc then liminf, || f|

Lr(un) = supk (fe 1) ;

b) If f is usc then limsup, || f]

Lo <maxg (fe™ 1) .
Proof. a) Take f, € C(K), 0< fp,1f. As j— o0

liminf || f|
n

£ (pan) 2 HIIDE | £ £ ) = i (5 e‘I)TS%p (fe 7).

Part b) is similar using the semi-continuity of the limit f. O

Corollary 9.
a) liminf, (p,(G))Y/™ > exp(—infg I) for every open set G C K ;

b) limsupy, (fn(F))Y" <exp(—infrl) for every closed set F C K ;



¢) If an open set G C K satisfy infg I =infs I then

lim (2, (G)Y" = lim (pun(G))V/™ = exp( — igf I)=exp(—min I).
n n G

Exercise 10. Note that infg I =infs I for open G does not imply that p,(G)/pun(G)— 1. Find
a counterexample. (Hint: try K = [0, 1], G = (0, 1] and choose i, as a mixture of Lebesgue mea-
sure and an atom in 0 with appropriate weights).

Choose a metric d on K and consider open and closed balls B, ,— = {y € K: d(z, y) < r} and

By ={yeK:d(z,y) <r}. We can describe the rate function I in terms of probability decay
of such balls. In particular the following holds.

Proposition 10. For every x € K there exists a function N:(0,1) — N such that

1
lim su —lo B +I(xz)| =0.
T—’0+n>NIzr) —10g pin(Bq,r+) + ()

Proof. By the probability decay rate estimates we have that there exists N(r) such that for all
n > N(r) we have

exp(— inf I)—7“<(un(Bxﬂ._))l/”g(un(Bx,,«_))l/"gexp(— inf I)+r.

@, — Ba,r+

By lIsc-ity of I, infp, ., I — I(x) for r — 04, therefore the statement. O
In fact decay of small balls determine LD-convergence.

Proposition 11. Assume that for every x € K

liminf liminf log(,un(Bm,,«_))l/" = limsup limsup log(pn(Bx7,-+))1/” =—1I(z)
r—0+ n r—04+ n

then the sequence (pn)n obey the LDP with rate function I.

Proof. By compactness we can extract a sub-sequence obeying the LDP with rate function I’
but by the above proposition

—I(z) < lim liminf log(pn, (Be,»-))"™ =—I'(z) = lim limsup log( i, (Ba,r4))"/™ < —I(z).

r—0+ ng r—=0+ g,

O

The Gartner-Ellis theorem and Cramérs theorem in R?

Let us give a first application of the sequential compactness result above: LD-convergence needs
convergence of || f||zn(,,) for all continuous functions. Here we will see that in the vector space
case and with enough regularity it is enough to check convergence of exponentials of linear func-
tionals.

Theorem 12. (Géartner-Ellis) Let K C RY be compact and let X, be K-valued r.v.s such that
for all X € R?

lim %log E[e" M X =G(N)



where G: R — R is a differentiable (convex) function. Then {X,}n>1 obey the LDP with the
(convex) rate function I(x)=supyera[(A,2) — G(N)].

Proof. Given the existence of the limit above, convexity of G is just a consequence of Hdolder
inequality. By compactness there exists a subsequence {X,,} which satisfy the LDP for some
rate function I': RY— R, which can be taken equal to + oo outside K. Then by definition

G(N) = lim —log E[e" )] = sup (A, z) = I'(x)) = sup ((\,z) — ['(x))
k Nk ek zeR?

To conclude that I =1’ we need to prove that the Fenchel-Legendre transform is invertible at G.
Our hypothesis guarantees that for each x there exists A\, € R such that I(x) = (\,, 2) — G(\,)
and that I(y) > I(x) + (\z, y — 2) for all y=x (prove it!). Then for all y € RY G(\.) = (A, y) —
I'(y) so that I'(x) > (\z, ) — G(\;) = I(z). On the other hand, by compactness, there exists
g € K such that, if § #x,

Aay§ —2) = I'(§) = G(A2) = Ay ) = = I(2) > = I(§) + (e, § — )

which means that I'(g) < I(y), in contradiction to the fact that I’ > I on K. So we must have
x =9 but then I(z) = (Az,z) — G(Ay) = I'(x) which concludes the proof. O

Of course a basic corollary is the multidimensional Cramér theorem.

Corollary 13. (Cramér-Varadhan) Let (X,,),>1 be an iid sequence with values in the com-
pact K CRY. Let A()\) =log E[exp(\, X1)], I(x) =supx [(\, z) — A(\)] and pn be the law of the
empirical mean S, = (X1 + - + X,)/n. Then the sequence (pn)n satisfy the LDP with the
convez rate function 1.

Proof. Exercise. You need only to verify that G(A) = A(\) and justify its smoothness. O

The rate function is the I'-limit of relative entropy

Given a probability measure p on the compact K we can define the relative entropy H,: II(K) —
[0, 4 o] as

H,(v) =sup [v(p) —log p(e?)]

where the supremum is taken wrt all continuous functions on K. Then

[ log(dp/dv)dp if p<v
+ oo otherwise

Hu(v)= {
The function H, is strictly convex and HM(Z/) =0 iff v = p, moreover

log pu(e?) =sup [v(p) — H,(v)]

v

where the supremum runs over all probability measures on K. Consider a sequence (), and
define H,(v)=H,, (v)/n, then H,(v)=sup, [v(¢) —log|le?| 1n(u,)] and

log [le? || Ln(u,y = sup [v(p) — Ha(v)]
vell(K)



Assume that (up)n obey the LDP with rate I, then we have

limlog [l () = sup (p() = I(z)) = sup [v(p)—v(I)]

zeK vell(K)

where we introduce a maximization over probabilities to stress the similarity with the varia-
tional representation at finite n.

Rate function can be seen as asymptotic entropy in I'-convergence sense. I'-convergence is a
variational convergence introduced by E. de Giorgi. In a metric space M the I'-convergence of a
sequence of positive functionals I,,: M — R is defined via

[iminf I,(z) = inf {liminf I,(x,): 2, — z}
and

Timsup I,(x) = inf {limsup I,(z,): 2, — 2}

When I'limsup I,, = I'liminf I,, we denote the common limit as I'lim I,,. The I" limits are Isc func-
tions. Here, as before, we restrict ourselves to a compact space M. We will be interested in the
case where M =TI(K) for some compact metrizable K.

Theorem 14. For every J: M —R and x € M
a) J(z) <Tliminf,, I,(x) < Ve, — : iminf, I,(x,) > J(z) ;
b) Tlimsupy, In(x) < J(x) < Jz, — a: limsupy, In(z,) < J(x) .

T'liminf and Tlimsup are respectively the largest and smallest Isc functions satisfying the above
properties.

Then I'lim,, I,, = I if and only if for all z,,,  such that z, — = we have liminf, I;,(x,) > I(z) and
moreover for every x there exists z, — = such that limsup,, I,(z,) <I(x).

Theorem 15. Properties of T'-convergence :
a) minpg I =lim, (minpag I,,)
b) If InLI, T, minimizer of I, and r,— x = = minimizer of 1
. . r r
¢) If G is continuous and I,—1I then I,+G—I+G
d) If M is separable from every sequence I, we can extract a I'-converging subsequence.
Example 16. Let M =0, 1] and I,,(z) =sin?(27z) then T'lim,, I,,(x) =0 for all z € M.

Theorem 17. (u,) obey the LDP with rate function I iff Tlim, H,=1.

Proof. Let us prove that LDP = TI'-convergence. By the variational characterization H,,(v,) >
vn(p) — log ||e? || for every ¢ € C(K). If v, — v then, by LD convergence, liminf, H,(v,) >
v(p) —supk (¢ — I). Since I is Isc there exists a sequence of continuous functions ¢, TI. Then

hnrllinf H,(vn) > liTIln [v(pn) — Sl’ép (on—1)]=v(I)



since supi (¢n — I) — 0. Now for every ¢ there exists (vy,), such that ||e?]||, = vn(@) — Hp(vn).
By compactness we can take a subsequence still denoted v, such that v, — v for some v. By
LD-convergence we get lim,, Hy,(vn) = v(p) — supk (¢ — I). But by the previous bound v(p) —
supk (¢ — I) > v(I) which implies that v(¢ — I) > supk (¢ — I), so the limit point v must be con-
centrated on the maxima of ¢ — I. Take ¢ such that this function has a unique maximum at z
to obtain that for every x € K there exists v, — §, for which lim,, H,(v,) < I(x). By convexity,
for all v € II(K), Iimsup,, H,(v) = llimsup,, H,( [ 0,v(dy)) < | v(dy)Tlimsup, Hy,(d,) < v(I).
The reverse implication is a direct consequence of the variational properties of I'-convergence:

sup (v() —v(I)) =limsup (v(p) — Hu(v)) = lim log le#]ln

v nov

for every ¢ € C(K) which by density implies LD-convergence with rate function 1. O

Remark 18. Compactness of LD-convergence can be obtained as consequence of the compact-
ness of I'-convergence.

Properties of LD-converging sequences

Theorem 19. (CONTRACTION PRINCIPLE) Let K' be another compact metrizable space and F:
K — K’ be a continuous function, (in)n a sequence of measures on K satisfying the LDP with
rate function I, and v, = Fyip, € II(K') the image measure of p, wrt. F, i.e. vp(A) =
pn(F~YA)) for all Borel sets ACK'. Then (vyn), satisfies the LDP with rate function

I'(y)= i I=min{I(z):z€ F~'({y})}

where the minimum is by definition + oo if F~1({y}) = @. Otherwise the minimum is attained
since F=Y({y}) is compact and I is Isc.

Proof. Exercise. Use the fact that for all ¢ € C(K’) the change of variables formula gives
lgllLn@,y=llge Fl

L7 () O
Actually, in the contraction principle only continuity of F' at the points where I <+ co matters:

Theorem 20. (CONTRACTION PRINCIPLE II) Let F: KC— K’ be a function which is continuous
on Ko C K. Let (pn)n CII(K) obey the LDP with rate function I such that I(x) =+ oo for every
2ZKo. Then vy, = Fipy, satisfy the LDP with rate function I'(y) =ming -1, I.

Proof. Take a function g >0 continuous on Ky and consider the functions f=go F and

(N)E (@)= sup [e* =D @], ()i (@)= inf [e" D f(2)]
z’'eC z'e

The functions f;gt are continuous, fi = f > fr and filf, fi 1f point-wise on Ky as k — oo
(check it: use the triangular inequality for d). We have [|(f)illir(u,) < llg o F|
(£ |27 () SO it Temains to prove that

Lr(vn) S

supsup [(f) e ] "

K =infsup [(f)ie” ] =sup[(go F)e~ "] =sup [ge™

K Ko K’

to get existence of the limit and the identification of the rate function I’. Now you can check

that by Lemma 7 we have supx [(f)ie 7] = supk, [(f)ie !]] supx, [e~’f] since the functions
(£)f, f are continuous on Ko and supx [(f)Ze '] = supk, [(f)-e |1 supx, [fe~!] by the
(increasing) pointwise convergence of (f); towards f. O



Theorem 21. (CHANGE OF MEASURE) Let (in)n and (vp)n two sequences of probabilities on
K such that, for all n,

dV" _ —nh
din "€

for some h € C(K) and (cn)n. Then if (pn)n obey the LDP with rate function I then (vn)n obey
the LDP with rate function J given by

J:I+h—m}én(1+h)=1+h—hmbg—%
n

Proof. Exercise. Use the fact that || f | zn,) = | fe ™" |n )/ 111 L7 (- O



