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Sanov’s theorem

Restriction and conditioning

Consider a sequence (µn)n satisfying the LDP with rate function I and an open set G ⊂ K such
that infG I = infḠ I.

Proposition 1. (Restriction) For every f ∈C(K)

lim
n

‖1G f ‖Ln(µn) = lim
n

‖1Ḡ f ‖Ln(µn) = sup
G

(|f |e−I)=max
Ḡ

(|f |e−I).

Proof. We can restrict ourselves to f � 0 and by density assume that f > 0. We thus write f =
e−h with h ∈ C(K) and define new probability measures by νn = cn e−hµn for suitable constants
cn. The sequence (νn)n satisfy the the LDP with rate function J = I + h −minK (I + h), since h
is continuous infG J = infḠ J so

‖1G f ‖Ln(µn) = ‖f ‖Ln(µn)(νn(G))1/n→ exp(− inf
G

J −min
K

(I +h))= exp(− inf
G

(I +h)).

�

If I(x) < + ∞ for some x ∈ Ḡ then µn(Ḡ ) > 0 for n large enough and we can introduce condi-
tional measures νn such that νn(f) = µn(f 1Ḡ)/µn(Ḡ ) for all f bounded Borel on K. The set Ḡ
is another compact metrizable space.

Corollary 2. Assume minḠ I < +∞. The sequence of conditional measures (νn)n obey the LDP
with rate function J : Ḡ → [0, +∞] given by J(x)= I(x)−minḠ I for all x∈ Ḡ.

Proof. Take f ∈ C(Ḡ ) and let f̂ ∈ C(K) any continuous extension of f (which exists for
example due to separability of C(K), think about it). Then ‖f̂ 1Ḡ‖Ln(µn) → maxḠ (|f̂ |e−I) so
‖f ‖Ln(νn) = ‖f̂ 1Ḡ‖Ln(µn)/‖1Ḡ‖Ln(µn)→maxḠ (|f |e−I)/maxḠ (e−I). �

Tensorization and projections

Theorem 3. Consider two compact Polish spaces K1 and K2. Let (µn
1)n and (µn

2)n be sequences
resp in Π(K1) and Π(K2) which obey the LDP with rate functions I1 and I2. Then the sequence
(νn = µn

1 × µn
2)n in Π(K1×K2) obey the LDP with rate function I(x1, x2) = I1(x1) + I2(x2).

Proof. Take f(x1, x2) = (f1⊗ f2)(x1, x2)f1(x1)f2(x2). Then for any LD-converging sub-sequence
of (νn)n we have, for some rate function I ′,

lim
k

‖f1⊗ f2‖Lnk(νnk
) = sup

x∈K1×K2

(f1(x1)f2(x2)e−I ′(x1,x2)).

On the other hand ‖f1⊗ f2‖Lnk(νnk
) = ‖f1‖Lnk(µnk

1 )‖f2‖Lnk(µnk
2 ) and then

sup
x∈K1×K2

(f1(x1)f2(x2)e−I ′(x1,x2))= sup
x1∈K1

(f1(x1)e−I1(x1)) sup
x2∈K2

(f2(x2)e−I2(x2))
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For some fixed z ∈K1×K2 choose fi(xi) = exp(−Ndi(xi, zi)) for i = 1, 2. Letting N →∞ we get

I ′(z1, z2)= I1(z1)+ I2(z2) = I(z)

(prove it!) thus all possible accumulation points of (νn)n have the same rate functions so the
whole sequence satisfy the LDP with rate function I. �

Exercise 1. Prove that (µn
1 × µn

2)n is LD-convergent if and only if (µn
1)n and (µn

2)n are LD-con-
vergent.

Theorem 4. (Dawson-Gartnër) Consider a sequence of measures (µn)n. Let {gk}k�1 ⊆
C(K) be a family of continuous functions which separates the points of K. Define Gk:K→Rk as
Gk(x) = (g1(x), � , gk(x)). Assume that for all k � 1 the laws µn

k = (Gk)∗µn of the vector (g1, � ,
gk) obey the LDP with rate function Ik on the compact set Gk(K). Then (µn)n satisfy the LDP
with rate function

I(x) = sup
k

Ik(Gk(x)).

Proof. By the Stone-Weierstrass theorem the functions of the form f = g(Gk) are dense in
C(K0) and the limit limn ‖g ◦ Gk‖n exists. Convergence of ‖f ‖n for a dense set of f imply LD-
convergence. Let us call I ′ the rate function, then

I ′(x)= log sup {f(x): lim
n

‖f ‖n � 1}� log sup {g(Gk(x)): lim
n

‖g ◦Gk‖n � 1}= Ik(Gk(x))

so I ′(x) � supk Ik(Gk(x)) = I(x). Now for every f ∈C(K) such that limn ‖f ‖� 1 choose k and g
such that ‖f − g ◦Gk‖∞� ε. Then

f(x) � g(Gk(x)) + ε � lim
n

‖g ◦Gk‖neIk(Gk(x)) + ε� (1 + ε)eI(x) + ε

so I ′(x)� log[(1 + ε)eI(x) + ε] for arbitrary ε > 0. Then I = I ′. �

Large deviations for coin tossing and Boltzmann discovery

Let (Xn)n�1 be an iid sequence with law Bernoulli(p) for some p ∈ [0, 1]. Consider the r.v. Nn =∑
k=1
n Xn = #{Xk = 1: 1 � k � n} which counts the number of ones in the sequence. Of course

Nn∼B(n, p) and if µn is the law of Nn/n we have

‖f ‖n =

[ ∑
k=0

n

|f(k/n)|n
(

k
n

)
pk(1− p)n−k

]1/n

Recall that given µ, ν ∈Π({0,� , N }) the relative entropy of ν wrt µ is given by

H(ν |µ)=
∑
i=0

N

ν(i)log ν(i)
µ(i)

.

Exercise 2. Prove that (µn)n satisfy the LDP with rate function

I(x)= x log(x/p)+ (1− x) log ((1−x)/(1− p))= H(Ber(x)|Ber(p)).
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Hints:

a) Prove that ‖f ‖n ∼ max0�k�n (|f(k/n)|
(k

n

)
1/npk/n(1 − p)1−k/n) using the fact that the

cardinality of the summation in the definition of ‖f ‖n is of order n.

b) Prove that, uniformly in 0� k � n,

(
k
n

)
1/n∼

(
k

n

)−k/n(
1− k

n

)−(1−k/n)

by observing that the bound

∫
1/k

1

log xdx� 1
k

∑
m=1

k

log(m/k) �
∫

0

1

log xdx

imply (k!)1/k∼ (k/e) as k→+∞ and then conclude that (k!)1/n∼ (k/e)k/n uniformly in k
by using different arguments for small and large k.

For sequences (Xn)n�1 of iid variables on the finite set K = {1, � , N } with common law ρ ∈
Π(K) we can define the empirical vector Ln with values in the compact metrizable space Π(K) =
{p∈ [0, 1]N : p1 +� + pN =1} as

Ln(i)= 1
n

∑
k=1

n

1Xk=i =
#{1 � k � n : Xn = i}

n

and let µn to be the law on Ln (thus µn∈Π(Π(K))).

Theorem 5. (Boltzmann, 1877) The sequence (µn)n satisfy the LDP on Π(K) with (convex)
rate function I(ν) =H(ν |ρ).

The key point of a direct proof of this theorem is that the set of all possible empirical vectors of
a sample of size n is of cardinality not larger than (n + 1)N (each of the N components can take
at most n + 1 values). This magnitude disappear in the LD limit since it is sub-exponential in n.
Only the asymptotic size of the set of the microscopic configurations compatible with a given
empirical vector will contribute to the rate function, as in the coin tossing (N = 2) case.

Another possible proof of this theorem goes via Cramér theorem on RN. Replace each Xn by
the vector of Bernoulli variables (Yn

1, � , Yn
N): Ω → {0, 1}N where Yn

i = 1Xn=i and observe that
Ln(i) = n−1

∑
i=1
n

Yn
i so that empirical measure becomes an empirical mean. Then Cramérs the-

orem gives that the rate function on Π(K) is given by the Fenchel-Legendre transform Λ: RN →
R of the log mgf of the vector Y1, but

Λ(λ1,� , λN)= logE(eλ1Y1
1+� +λNY1

N

)= log
∑
i=1

N

eλi ρi

so, for every x1,� , xN ∈ [0, 1] with x1 +� + xn =1 we have

I(x1,� , xN)= sup
λ1,� ,λN

[λ1x1 +� + λNxN − log
∑
i=1

N

eλi ρi]

= H((xi)1�i�N |(ρi)1�i�N)=
∑
i=1

N

log
xi

ρi
xi .
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Remark 6. Boltzmann discovered this asymptotic probability in 1877 during his attempt to
ground thermodynamics of the perfect gas on a microscopic statistical theory of a system of free
particles. His proof, using Stirling asymptotic formula for n!, was not completely rigorous but
nonetheless right. His work showed that the physical entropy of thermodynamics is linked with
the mathematical entropy of a probability distribution as a measure of its “unevenness”.

Now we are ready to generalize Sanov theorem to compactly supported measures on Rd, not
necessarily discrete. Let K a compact subset of Rd and (Xn)n�1 an iid sequence with values in
K with law ρ = (X1)∗ P ∈ Π(K) and µn ∈ Π(Π(K)) the law of the empirical measure Ln defined
via Ln(f) = n−1

∑
i=1
n f(Xi) for all bounded measurable f : K → R (alternatively Ln(dx) =

n−1
∑

i δXi(dx)).

Theorem 7. (Sanov) The sequence (µn)n obey the LDP on Π(K) with rate function I(ν) =
H(ν |ρ).

Proof. Let {ϕk}k�1 be a countable dense set in C(K) and let Fk = σ(ϕ1, � , ϕk) the associated
filtration of the Borel σ-algebra B(K). Let Fk: Π(K) → [ − 1, 1]k be the continuous function
Fk(ν) = (ν(ϕ1)/‖ϕ1‖, � , ν(ϕk)/‖ϕk‖). By Cramer’s theorem the image law (µn

k = (Fk)∗ µn) sat-
isfy the LDP on [− 1, 1]k with rate function Ik(x1,� , xk) given by

Ik(x1,� , xk)= sup
λ1,� ,λk

[λ1x1 +� + λk xk − logE[e
∑

iλiϕk(X1)/‖ϕk‖]].

Then by the Dawson-Gartnër theorem

I(ν)= sup
k

Ik(Fk(ν)) = sup
k

sup
λ1,� ,λk

[ν(λ1ϕ1 +� + λk ϕk)− logE[e
∑

iλiϕk(X1)]]

= sup
ϕ

[ν(ϕ)− logE[eϕ(X1)]] =H(ν |ρ).

�

Sanov’s theorem can be used to prove Cramérs theorem. Indeed the empirical mean Ŝn of a
vector (X1, � , Xn) is a function of the empirical distribution Ln: Ŝn =

∫
xLn(dx) = m(Ln). If

the variables take values on a compact subset of Rd then m: Π(K) →R is a continuous function
and its image its compact. By the contraction principle the laws σn of Ŝn obey the LDP with
rate function J(x) = inf {H(ν |ρ) : ν ∈ Π(K), µ(ν) = x}. Introduce the probability measures ρλ =
eλx−logΛρ(λ)ρ and observe that for any y ∈ supp ρ we can find λ such that y =m(ρλ) and that

H(ν |ρλ)=
∫

log
dν

dρλ
dν =H(ν |ρ)−λm(ν)+ logΛρ(λ)

so J(y) = inf {H(ν |ρλ) : ν ∈ Π(K), µ(ν) = y} + λy − log Λρ(λ) = λy − log Λρ(λ) = supλ [λy −
logΛρ(λ)] (think why). Conclusion : J is the Fenchel-Legendre transform of Λρ.

Gibbsian conditioning

Sanov’s theorem allow us to discuss another physical phenomenon related to “Gibbsian” distribu-
tions. Let (Xn)n�1 be an iid sequence with values in K and law ρ ∈ Π(K). Fix some integer k �
1 and consider the law µn ∈ Π(Kk) of (X1, � , Xk) conditional of an event involving Ln =
n−1

∑
i=1
n δXi, the empirical measure of the vector (X1,� , Xn) :

µn(f)=
∫
Kk

f(x)µn(dx) =E[f(X1,� , Xk)|Ln∈B]
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where A ∈ B(Kk) and B ∈ B(Π(K)). We will work with k = 1 generalization to higher k being
easy.

Exercise 3. Let k = 1, show that

µn(f)=E[f(X1)|Ln∈B] =E[Ln(f)|Ln∈B] =
∫

Π(K)

σ(f)νn(dσ)

where νn is the law of Ln conditional to the event B.

Assume that B is closed and that infBo Hρ = minB Hρ = Hρ(ν̂ ) for a unique minimum point ν̂ ∈
B. Then the LDP for (Ln)n�1 and the restriction theorem imply that the sequence (νn)n�1

obey the LDP on B ⊆ Π(K) with rate function J(ν) = Hρ(ν) − Hρ(ν̂ ) and that νn → δν̂ as n →
∞. Then, for every continuous f ∈ C(K), µn(f) =

∫
Π(K)

σ(f)νn(dσ) → ν̂ (f) and we have

proved that the sequence (µn)n�1 converge weakly to the probability measure ν̂ which is the
solution of the minimization of Hρ over B.

Interesting case is where the conditioning set B is of the form B = {ν ∈ Π(K): ν(ϕ) ∈ [e, e + δ]}
for some small δ > 0 and e ∈ R is such that E[ϕ(X1)] < e < supK f . This last condition is to
render the event {Ln ∈ B} = {Ln(ϕ) ∈ [e, e + δ]} atypical : by the LLN we have Ln(ϕ) →
E[ϕ(X1)] a.s. In this case ν̂ can be described explicitly as an exponential perturbation of ρ. Let
λ ∈ R and introduce the “tilted” measures ρλ = eλfρ/Z(λ) with Z(λ) = ρ(eλf) and observe that
Hρ(ν)= Hρλ(ν) +λν(f)− logZ(λ).

Exercise 4. Show that there exists λ > 0 for which ρλ(f)= e and that Hρ(ρλ) =λe− logZ(λ).

Now

Hρ(ρλ)= λe + logZ(λ)= min
ν :ν(f)∈[e,e+δ]

[Hρλ(ν) +λν(f)] + logZ(λ)=min
B

Hρ

so ν̂ = ρλ.

Let us extend the result to k > 1. It is enough to consider new “block” variables X̃i =
(X1+k(i−1), � , Xk+k(i−1)) and observe if L̃n ∈ Π(Kk) is the empirical law of (X̃1, � , X̃n) then

Lnk(f)= L̃n(f̃ ) where f̃ (x1,� , xk)= (f(x1)+� + f(xk))/k.

Exercise 5. Let ν ∈ Π(K2), show that Hρ⊗ρ(ν) � Hρ⊗ρ(ν1 ⊗ ν2) = Hρ(ν1) + Hρ(ν2) where ν1, ν2

are the marginals of ν. Hint: in the variational formula for Hρ⊗ρ(ν) take test functions ϕ of the
form ϕ1⊗ ϕ2.

Exercise 6. For B of the form B = {Ln(f) ∈ I} derive the LDP for (L̃i)i�1 on Π(Kk) and
obtain that the law of Y1 conditional on B is given by the minimum ν̃ ∈ Π(Kk) of the functional
Hρ̃ over {ν ∈ Π(Kk): ν(f̃ ) ∈ I} where ρ̃ = ρ ⊗ � ⊗ ρ is the k-fold product measure with
marginals ρ. Conclude that if ν̂ is the unique minimum of Hρ over {ν ∈ Π(K) : ν(f) ∈ I} then
ν̂ ⊗ � ⊗ ν̂ is the unique minimum of the variational problem on Π(Kk) and observe that this
imply the independence of (X1,� , Xk) in the limit law.

The physical interpretation of this phenomenon goes as follows: consider an assembly of n inde-
pendent particles each of them characterized by some quantity Xi, i = 1,� , n taking values in K
(e.g. energy, momentum, position, etc...) and assume that the allowed configurations of the
whole system are those compatible with a given mean value of some function f : K → R :∑

i f(Xi)/n 
 e (e.g. energy per particle, density, etc..). This constraint is macroscopic in the
sense that involves only an average over all the particles. Then in the limit of a infinite system
(n→∞, in reality n
 1023) the configurations of a very small subsystem of size k (in our model
k is fixed as n → ∞) are described by iid configurations, each particle distributes as ρλ, the
Gibbs distribution compatible with the macroscopic constraint.
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Large deviations for processes

Let (Xn)n�1 be an iid sequence of Bernoulli(p) r.v. For every n the vectors X�n = (X1, � , Xn)
are random elements in {0, 1}n which we will embed in L∞([0, 1]) as follows : for each n let

Fn(x1,� , xn)(θ)=
∑
i=1

n

xi 1θ∈[(i−1)/,i/n)

so that Fn(X�n) is a random element in K= {f ∈L∞([0, 1]): ‖f ‖L1 � 1} and we denote by µn its
law. On K we consider the weak- ∗ topology, i.e. the smallest topology which renders all the
linear maps f � g(f) =

∫
0

1
f(θ)g(θ)dθ continuous for every g ∈L1([0, 1]). With this topology K

is compact and metrizable. A possible metric is obtained by taking a countable dense subset
{ϕk}k�1 of the unit ball of L1 and letting

d(f , g)=
∑
k�1

|ϕk(f)− ϕk(g)|
2k

Another possible metric is given by d(f , g) = sup0�t�1 |
∫

0

t (f(θ) − g(θ))dθ |. Let Jp(x) =
H(Ber(x)|Ber(p)). Then we have the following result

Theorem 8. (Mogulskii) The sequence (µn)n obey the LDP on K with rate function

I(f) =
∫

0

1

Jp(f(θ))dθ.

Proof. We only need to uniquely identify the rate function I ′ of possible accumulation points.
For each k define Qk,l = ((l − 1)/k, l/k] and Gk: K→ [ − 1, 1]k as Gk(f) = (fk,1, � , fk,k) where
fk,l =

∫
Qk,l

f/|Qk,l| is the mean of f over Qk,l so that πk(f) = Fk(Gk(f))→ f in K (why?). By

Cramérs theorem the laws µn
k of Gk(Fkn(X�kn)) on [ − 1, 1]k satisfy the LDP with speed n/k

and rate function Ik(x1, � , xk) =
∑

i=1
k

Jp(xi) taking into account the change of speed we have
that, for every g ∈K and for every k,

min {I ′(f): Gk(f)= Gk(g)}= 1
k

∑
i=1

k

Jp(Gk(g)i)=
∫

0

1

Jp(πk(g)(θ))dθ = Ik(g)

Now using Fatou lemma it is easy to compute the Γ-limit of the functional
∫

0

1
Jp(πk(g)(θ))dθ

as

Γlim
k

∫
0

1

Jp(πk(g)(θ))dθ =
∫

0

1

Jp(g(θ))dθ = I(g)

(exercise) while another easy argument gives Γlimk min {I ′(f): Gk(f) = Gk(g)}= I ′(g) since I ′ is
lsc. Then we can conclude that I(g)= I ′(g). �

6


