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Introduction

A Boolean function (Bf) describe an event depending on a number (n, usually large) of variables
taking two values. We can define it as a function on {0, 1}n taking values in {0,1} (Boolean input
& outputs).

Applications.

a) Logic. Bf represent propositional formulas, two formulas are equivalent iff they are associ-
ated to the same Bf.

b) Random graph properties. Take a graph with n edges: a Bf (in this case boolean random
variable) describe the presence or absence of a certain property in the subgraph obtained
by randomly erasing a subset of the edges. E.g. the presence of a path of edges con-
necting two specific vertices of the graph.

c) Social choice theory. Each variable is the preference of a certain individual and the Bf
describe a way to aggregating these preferences to express a choice at the level of the
whole society.

d) Cryptography.

It is mathematically convenient to consider Bfs as functions from Ωn = {±1}n to Ω =Ω1.

Examples. (Names are usually due to social choice interpretation.)

a) Dictatorship. Behaves according to one of the variables (the dictator):

DICTn(x)= x1

b) Parity. Tells whether there is an odd or even number of −1:

PARn(x)= x1
 xn

c) Majority. The most popular value wins: (assume n odd)

MAJn(x)= sign
(

∑

i

xi

)

d) Iterated majority. Two(or multi)-level election system: (assume n = k m with k, m odd
integers)

MAJn,k(x) = sign

(

∑

ℓ=1

m

sign

(

∑

i=1

k

x(ℓ−1)m+i

))

Social choice theory

To motivate our study of Boolean functions we look at a particular application outside “hard sci-
ences”: social choice theory.
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Social choice theory studies (among other similar questions) the way individual preferences
aggregate into the choice of the society. Its origins are in economics and political science. Indi-
viduals can also be “computer” or “distributed agents” situation of interests to the computer sci-
entist.

Condorcet (1743–1794) published a paper in 1785 “Essay on the application of Analysis to the
Probability of Majority decisions” where he points out two facts which essentially initiated the
mathematical study of social choice.

a) Condorcet’s paradox. It is possible that the majority of the society prefers A to B and
B to C while still preferring C to A. Aggregated preferences are not transitive.

b) Condorcet’s “jury theorem”. We have two candidates A and B. A is better than B.
Each individual get indications as to whether one of the candidate is better than the
other and acts accordingly by voting for this candidate. We assume that the “signal is
small” that is that the indications received by each individual are random and indepen-
dent and that they points to A with a probability p > 1/2. Signals tells something on the
real state of affairs but there is noise. An elementary probability computation shows that,
as the size of the population tends to infinity, the majority will correctly prefer A to B.
Aggregation (via majority) filter out the noise and reveal an arbitrarily small signal
(smallness is measured as a deviation from p = 1/2).

Arrow (1951) shaped modern social choice theory via an axiomatic analytic approach. He is the
corecipient of the 1972 Nobel prize in Economics (with J. Hicks). For a recent perspective on
the current status and perspective of social choice theory a very nice reading is given by the
Nobel lecture by Amartya Sen, 1998 Nobel price in economics, which has the title “The possi-
bility of social choice”.

Arrow’s most famous result is an “impossibility theorem” in the theory of social choice [ K.
Arrow, “A Difficulty in the Concept of Social Welfare”, Journal of Political Economy 58(4)
(August, 1950), pp. 328-346, http://gatton.uky.edu/Faculty/hoytw/751/articles/arrow.pdf ]. A
way to state his findings is the following

Theorem 1. (Arrow) Any social choice between at least three alternatives which respect transi-
tivity, independence of irrelevant alternatives and unanimity is a dictatorship.

Let us explain this statement. A preference relation between a set A of alternatives is a binary
relation aRb beween elements a, b ∈ A. The relation is transitive if aRb and bRc imply aRc.
Independence of irrelevant alternatives means that we assume that the social preference aRb is
only a function of the set {i: aRi b}, the preference of a w.r.t b for each individual in the society.
Unanimity means that if aRi b for all i = 1, 	 , n the also a Rb holds. The social choice is a dic-
tatorship if the society choice coincide with the preference of a certain individual whenever this
preference is strict: (aRi b) &∼(bRia)⇒ a R b for some i and all a, b∈A.

Condorcet found that social preference relations can be irrational (i.e. not transitive). Arrow
found that they are rational only if they are given by dictatorships. Not a very encouraging
beginning for a theory.

Preference relations can be casted into vectors of boolean functions. To keep things simple take
three alternatives, A = {A, B, C}. If we assume that the preference relation is strict (that is
either aRb or bRa but not both) then to specify a preference relation on A we need three
boolean values (for aRb, bRc, cRa). We do not assume rationality for the moment. The social
choice can then be seen as a function F : {−1, 1}3n → {−1, 1}3. Independence of irrelevant alter-
natives implies that the social preference aRb is determined uniquely by aRi b for i = 1,	 , n. So
if we set xi = 1 iff aRi b and xi = −1 otherwise, then whether or not aRb holds it is determined
by a Boolean function f(x1, 	 , xn). Similarly we can introduce variables yi for bRic, zi for cRia

and functions g(y1, 	 , yn) and h(z1, 	 , zn) for bRc and cRa respectively. The three boolean
functions f , g, h describe completely the social choice function F (x, y, z)= (f(x), g(y), h(z)).
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Example 2. Take n = 3 and f , g, h given by simple majority functions. Then we have Con-
dorcet’s paradox.

Order Voter 1 Voter 2 Voter 3

1 a b c

2 b c a

3 c a b

Then x = (1,−1, 1), y = (1, 1,−1), z = (−1, 1, 1), F = (f , g, h) = (1, 1, 1). Each of the individual
preferences (xi, yi, zi) is rational (transitive) while the social choice F is not rational :
aRbRcRa.

Rational preferences over 3 alternatives corresponds to vectors (α, β, γ) of boolean values which

are not all equal. This property is encoded by the function NAE: {±1}3→{0, 1} given by

NAE(α, β, γ)= 1−
∑

k=±1

I(α,β,γ)=(k,k,k).

Rational individual preferences determine the set Ψ = {(x, y, z) ∈ {±1}3n : ∀i ∈ JnK, NAE(xi, yi,

zi) =1}.

A neutral choice function is a function which is invariant by permutation of the alternatives. For
example if we rename a→ b, b→ c, c→ a then the function (f(x), g(y), h(z)) will become (h(x),
f(y), g(z)). Then neutrality imposes that f = g = h and only one Bf is needed to specify the
choice function.

Definition 3. The group G ⊆ Sn is transitive if for all i, j ∈ JnK there exists at least one σ ∈ G

such that σ(i)= j.

The choice function is symmetric if it is also invariant by a transitive group of permutations of
the individuals. We let Sn be the full group of permutations of n objects.

Common voting methods are not necessarily invariant over the full group of permutations.

Exercise 1.

a) Prove that the function f(x1,	 , x5)=MAJ3(x1, x2, x3) is not symmetric.

b) Prove that the function f(x1, 	 , x9) = MAJ3(MAJ3(x1, x2, x3), MAJ3(x4, x5, x6), MAJ3(x7, x8, x9)) is

symmetric.

Another way to state Arrows’ theorem which is more adapted to the point of view of this course
is:

Theorem 4. No choice function can be rational, independent of irrelevant alternatives, neutral
and symmetric.

Remark 5. Condorcet devised a voting method which give a rational outcome, which is neutral
and symmetric but which is not independent over irrelevant alternatives. (Google for Con-
dorcet’s voting method).

In his 1788 essay “On the form of decisions made by plurality vote” Condorcet remarked on the
subject of the possibility of irrational choice functions: “But after considering the facts, the
average values or the results, we still need to determine their probability.”

To quantify the “impossibility” in Arrow’s result we introduce a way to measure the set of inputs
in Ψ which result in an irrational aggregated outcome. Being combinatorial in its essence the
most natural measure over the set Ψ is the uniform one. So we let P be the uniform measure
over Ψ⊆Ωn

3 . This is often called the Impartial Culture (IC) assumption.
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Remark 6. The IC assumption is quite unrealistic both from the point of view of independence
of different voters and uniformity over the voters preference relations. But we can think to
encode biased electors into the properties of the social choice function and model with i.i.d.
random variables the “undecided” electors.

Gil Kalai (2002) gave a quantitative version of Arrow’s theorem.

Theorem 7. (Kalai) The probability of a rational outcome for a symmetric neutral social
choice on three alternatives is less than 0.9192.

The proof uses insights coming for the theory of boolean functions via Fourier theoretic
methods.

Kalai’s statement is then that for any triples of boolean random variables (f , g, h): Ωn
3 →{±1}3

which are neutral and symmetric we have:

P(NAE(f , g, h)=1)6 0.9192.

In the following we will introduce basic material in preparation to the proof of this and related
results.

Harmonic analysis

Let f : Ωn→Ω be a character, i.e. f(x y)= f(x) f(y). Let (xi)j = (xj)
Ii=j. Then x =x1
xn and

f(x)= f(x1
xn)= f(x1)
 f(xn)=
∏

i∈S

f(xi) =
∏

i∈S

xi = xS

where S = {i ∈ JnK : f((−1)i) = −1} and x∅ = 1. The function f is the parity function on the
subset S of coordinates. It is also evident that any parity function is a character. Characters of
Ωn are in bijection with subsets of JnK. Harmonic analysis over Ωn consist in decomposing func-
tions over Ωn as linear combinations of characters.

The above caracterization of multplicative functions has a “robust” counterpart

Theorem 8. Assume that P[f(x) f(y) = f(x y)] > 0.9. Then f is close to some character, i.e.
exists S ⊆ JnK such that

P[f(x)= xS] > 0.9.

This is the kind of results we are looking at and Kalai’s form of Arrow’s theorem has this flavor.

Here the probability is given by uniform choice of both inputs x, y over Ωn independently.

Consider the uniform measure P over Ωn and the associated scalar product for real valued func-
tions :

〈f , g〉=2−n
∑

x∈Ωn

f(x) g(x)

We will use also the corresponding norm ‖f ‖2
2 = 〈f , f 〉. Note that if f , g are Boolean then

‖f − g‖2
2 = 〈f − g, f − g〉= ‖f ‖2

2 + ‖g‖2
2− 2〈f , g〉= 2− 2〈f , g〉

so that closedness can be measured by the angle between the two corresponding vectors.
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Characters are orthogonal for this scalar product

〈xS , xT 〉= 2−n
∑

x

xS xT = 2−n
∑

x

xS∆T =

{

0 if S � T

1 if S = T

Fourier coefficients f̂ :P(JnK)→R of f are defined as f̂ (S)= 〈f , xS〉 and

f(x)=
∑

S⊆JnK

f̂ (S) xS .

Plancherel formula holds

〈f , g〉=
∑

S⊆JnK

f̂ (S)ĝ(S)

and implies uniqueness of the representation as sum of characters.

Exercise 2. Compute the Fourier transform of these functions:

1. MAJ(x1, x2, x3)

2. AND(x1, x2) = 1 si x1 = x2 = 1 and −1 otherwise.

Example 9. If f is multiplicative,

f(x y)=
∑

S⊆JnK

f̂ (S) (x y)S =
∑

S⊆JnK

f̂ (S)xS yS

then f(y)f̂ (S) = 〈f(x) f(y), xS〉x = 〈f(x y), xS〉x = f̂ (S)yS which implies either f̂ (S) = 0 or yS =
f(y) for all y ∈Ωn.

Fourier transform over Ωn applies naturally to all real (or complex) valued functions (even if
characters are Boolean). Harmonic analysis of Boolean functions however shows additional pecu-
liar phenomena. For Boolean functions Fourier coefficients must conjure so that all terms in the
Fourier decomposition adds up exactly to ±1.

Consider the following problem: we draw at random and independently x, y in Ωn and check
whether f(x)f(y) = f(x y) when it happens we set BLR(f) = 1 otherwise we take it to be 0.
The distribution of BLR(f) measures the multiplicativeness of f . It is clear that if f is a char-
acter then this random test always succeed (that is BLR(f) = 1 always). Now we want to show
that if this random test fail too often then f cannot be too near to a character.

Let us say that two Bf f , g are ε-close if P(f � g) 6 ε. Observe that

P(f = g)=P(f g = 1) =E[1+ f g]/2 =
1

2
+

1

2
E[f g]

so f , g are ε-close iff E[f g] > 1− 2 ε.

Theorem 10. (Blum, Luby and Rubinfeld, 1990) If P[BLR(f) = 1] > 1 − ε then f is ε-
close to some character.

Proof. First let us express the probability using the Fourier expansion of f :

P[BLR(f)= 1] =E[If(x)f(y)=f(xy)] =E[If(x)f(y)f(xy)=1] =
1

2
E[1+ f(x)f(y)f(x y)]
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by Fourier expansion:

E[f(x)f(y)f(x y)] =
∑

S,T ,U⊆JnK

f̂ (S)f̂ (T )f̂ (U)E[xS yT xU yU]

by independence and orthogonality of characters

=
∑

S,T ,U⊆JnK

f̂ (S)f̂ (T )f̂ (U)E[yT yU]E[xS xU ] =
∑

S⊆JnK

f̂ (S)3

Then

1− ε 6
1

2
+

1

2

∑

S⊆JnK

f̂ (S)3

Using that
∑

S⊆JnK
f̂ (S)2 = 〈f , f 〉=1 we get

1− 2 ε 6
∑

S⊆JnK

f̂ (S)3 6max
S

f̂ (S)
∑

S⊆JnK

f̂ (S)2 =max
S

f̂ (S)

That is there exists T ⊆ JnK such that f̂ (T ) > 1 − 2 ε which means that f is strongly correlated

to the character xT . In particular ‖f − xT ‖2
2 = 2 − 2 f̂ (T ) 6 2 − 2 + 4 ε = 4 ε or that f is ε-close

to xT . �

The above proof is due to Bellare, Coppersmith, Håstad, Kiwi, and Sudan in 1995. The interest
of this result is that it allow to test for multiplicativity of the “black box” f with O(3/ε) tests
instead of O(2n).

Another interesting property: assume f ε-close to the character xS. Consider a uniform y ∈ Ωn

and define the random transformation Tf(x) = f(y)f(x y) then for every fixed x∈Ωn we have

P[T f(x)= xS] > 1− 2 ε.

Exercise 3. Prove this.

Note that the nontrivial fact is that the random function Tf gives with high probability the cor-
rect value for the nearest character.

Another example: a Boolean function concentrated on the first Fourier level is a dictatorship
(modulo ±1):

Lemma 11. (Friedgut) Let f be a Boolean function such that f̂ (S) = 0 when #(S) > 1 then
either f =±1 or f(x) =±xi for some i.

Proof. f is of the form f(x) = f̂ (∅) +
∑

i
f̂ ({i})xi. Since it is Boolean f(x)2 = 1 but by direct

computation

f(x)2 = f̂ (∅)2 +
∑

i

f̂ ({i})2 + 2
∑

i

f̂ ({i})f̂ (∅)xi +
∑

i� j

f̂ ({i})f̂ ({j})x{ij}

and by uniqueness of Fourier expansion we get f̂ ({i})f̂ (∅)= 0, f̂ ({i})f̂ ({j})= 0 for all i, j and

f̂ (∅)2 +
∑

i

f̂ ({i})2 = 1.

This implies that either f̂ (∅)2 = 1 or f̂ ({i})2 =1 for some i. �

6



Note that if we restrict ourselves to balanced functions, i.e. such that E[f ] = 0 then only (anti)-
dictators are possible in this last result.

To assess the approximate counterpart of the previsous lemma we need to gauge the “spectrum”
of the function. Define f6k as the projection of f over the span of {xS : S ⊆ JnK, #(S) 6 k} and

f>k = f − f6k the projection on the orthogonal space and finally f=k = f6k − f6k

f6k(x)=
∑

S⊆JnK,#(S)6k

f̂ (S)xS , f=k(x)=
∑

S⊆JnK,#(S)=k

f̂ (S)xS.

We also introduce the weight Wk(f) at level k of the function f as

Wk(f)= ‖f=k‖2
2 =

∑

#S=k

f̂ (S)2 .

Note that for a Bf
∑

k>0 Wk(f) =1.

Theorem 12. (Friedgut, Kalai, Naor) A Boolean function f such that ‖f>1‖2 6 ε 6 ε0 is
O(ε)-close to a dictatoriship or to a constant function.

[E. Friedgut, G. Kalai and A. Naor, Boolean functions whose Fourier transform is concentrated
on the first two levels, Adv. in Appl. Math., 29(2002), 427-437.
http://www.ma.huji.ac.il/~kalai/fkn.pdf.]

Let f be some Bf for which ‖f>1‖2 6 ε. By adding another variable x0 define the function g(x0,

x)= x0 f(xx0). Then its Fourier expansion reads

g(x0, x)= f̂ (∅)x0 +
∑

i

f̂ ({i})xi +
∑

S⊆JnK,#S>2

f̂ (S)xS x0
#S+1

so g is balanced (ĝ (∅)= 0) and W1(g)= ‖f61‖2 > 1− ε.

So we can prove instead this small variation.

Theorem 13. If W1(f)> 1− ε then f is O(ε)-close to a dictator (or anti-dictator).

Proof. We can assume that f is balanced (that is f(∅) = 0, why?). By hypothesis ‖f>1‖2 6 ε.
Moreover

1 = f2 = (f=1 + f>1)2 = (f=1)2 + f>1(2 f − f>1)

and

(f=1)2 =
∑

i

f̂ ({i})2 +
∑

i� j

f̂ ({i}) f̂ ({j})x{ij}�
q

> 1− ε + q .

Then

−2f f>1 6 q 6 ε− 2f f>1 + (f>1)2

By Chebishev inequality

P
(

|f>1|> 10 ε1/2
)

6
E[(f>1)2]

100 ε
=

1

100
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so that with probability 0.99 we have

−20 ε1/2 6−2 |f>1|6 q 6 ε + 2 |f>1|+(f>1)2 6 ε + 20 ε1/2 + 100 ε6 21 ε1/2

so

|q |6 21 ε1/2

for ε sufficiently small. Now the key point is that a “second level” function like q cannot be small
with large probability unless also its second moment be small. We will prove later that the
above probability estimate implies

E[q2] 6 O(ε)

for some proportionality constant (∼1000). But now

O(ε)>E[q2] =
∑

i� j

f̂ ({i})2f̂ ({j})2 =







∑

i

f̂ ({i})2�
1−ε







2

−
∑

i

f̂ ({i})4

⇒
∑

i

f̂ ({i})4 > 1−O(ε)

⇒1−O(ε)6max
i

f̂ ({i})2
∑

i

f̂ ({i})2

⇒max
i

f̂ ({i})2 > 1−O(ε)

�

Let us compute the probability that a given Bf allows for a rational outcome

Lemma 14. Let (x, y, z) be uniform over Ψ then

P[NAE(f(x), f(y), f(z))= 1] =
3

4
−

3

4

∑

S⊆JnK

(

−
1

3

)

#(S)

f̂ (S)2.

Proof. The NAE function has the following Fourier transform

NAE(α, β, γ) =
3

4
−

1

4
(α β + β γ + γ α)

Hence

P[NAE(f(x), f(y), f(z))= 1] = E[NAE(f(x), f(y), f(z))]

=E

[

3

4
−

1

4
(f(x)f(y)+ f(y) f(z)+ f(z) f(x))

]

(all the pairs (x, y), (y, z), (z, x) have the same distribution)

=
3

4
−

3

4
E[f(x)f(y)] =

3

4
−

3

4

∑

S,T ⊆JnK

f̂ (S)f̂ (T )E[xS yT ] .
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Now assume that S � T and for example that i ∈ S but i∈T . Then given independence of dif-
ferent voters profiles we get

E[xS yT ] =E[xi xS\{i}yT ] =E[xi]E[xS\{i}yT ] = 0

while if S = T

E[xS yS] =
∏

i∈S

E[xi yi] = (E[x1y1])
#(S) =

(

−
1

3

)

#(S)

since the four possibilities (x1, y1)= (±1,±1) are not equally likely and

2P[x1y1 =1] =P[x1y1 =−1] =
2

3
, E[x1y1] =

1

3
−

2

3
=−

1

3
. �

Corollary 15. Let f be a balanced Boolean function. If P[NAE(f(x), f(y), f(z))] > 1 − ε then

W1(f) > 1−
9

2
ε.

Proof. Given the above formula for the probability of a rational outcome we have

1− ε6
3

4
−

3

4

∑

k>1

(

−
1

3

)

k

Wk(f) =
3

4
+

1

4
W1(f)−

3

4

∑

k>2

(

−
1

3

)

k

Wk(f)

since W0(f) = f̂ (∅)2 = 0 by the balancedness of f . Then

W1(f)> 1− 4ε+ 3
∑

k>2

(

−
1

3

)

k

Wk(f)> 1− 4ε + 3 inf
g

∑

k>2

(

−
1

3

)

k

Wk(g)

where the inf it is taken over Boolean functions g such that W0(g) = 0 and W1(g) = W1(f).
Observe that for this class of functions

∑

k>2 Wk(g) = 1 − W1(g) = 1 − W1(f) so that the inf is

attained when W3(g) = 1 − W1(f) and Wk(g) = 0 for all others values of k > 2. Optimization
over g then yields

W1(f)> 1− 4 ε +
1−W1(f)
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which gives the claim. �

Putting these result together we can show that if f passes the NAE test with probability 1 − ε

then it must be O(ε)-close to a dictator.

Exercise 4. For δ small, is it possible that a Bf f is δ-close to two different dictators? (can you find the

largest δ which do not allow this?)
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