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Hypercontractivity, take one

To have a first feeling of hypercontractivity and equivalence of norms we analyze a special case.

Theorem 1. Let g be a multilinear polynomial of degree d in the variables (x1,	 , xn) then

E[g4] 6 9d (E[g2])2 .

Proof. We work by induction over n. If n = 0 the function g is constant so the claim is easy to
verify (with d = 0). Now

g(x1,	 , xn+1)= g0(x1,	 , xn)+ g1(x1,	 , xn) xn+1

with deg (g0)6 d and deg (g1)6 d− 1. Compute

E[g4] =E[g0
4 + 4 g0

3g1 xn + 6 g0
2 g1

2 + 4 g0 g1
3 xn

3 + g1
4]

=E[g0
4] + 4E[g0

3g1 xn]�
=0

+ 6E [g0
2 g1

2] + 4E[g0 g1
3 xn

3 ]�
=0

+E[g1
4]

=E[g0
4] + 6E [g0

2 g1
2] +E[g1

4]

Now by the induction hypothesis

E[g0
4] 6 9dE[g0

2]2, E[g1
4] 6 9d−1E[g1

2]2

E[g0
2g1

2] 6E[g0
4]1/2E[g1

4]1/2 6 3d 3d−1E[g0
2]E[g1

2]

so

E[g4] 6 9dE[g0
2]2 +6(3d 3d−1E[g0

2]E[g1
2])+ 9dE[g1

2]2

=9d(E[g0
2]2 + 2E[g0

2]E[g1
2] +E[g1

2]2)

=9d(E[g0
2] +E[g1

2])2 =9d(E[g0
2 +2g0g1xn + g1

2xn
2 ])2 =9dE[g2]2

�

Remark 2. Note that the same proof works for more general distributions of the xi. In partic-
ular it works for standard gaussian variables.

Hypercontractivity tells us that finite degree polynomials behave uniformly with respect to
probability estimations, for example if probability of large values is uniformly bounded then
moments are uniformly bounded.

Corollary 3. Let q be a second order polynomial and assume that p =P(|q |> 1) < 1/81. Then

E[q2] 6
1

1− 9 p1/2
.
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Proof. By the hypercontractivity estimate and Cauchy-Schwartz

E[q2] =E[q2I|q|61] +E[q2I|q |>1] 6 1 +E[q4]1/2p1/2 6 1 + 9p1/2
E[q2]

which gives the result. �

Exercise 1. Show that the above result cannot hold (even for different constants) for more general random

variables.

The rationality of social choice and the majority function

Recall the rationality probability (sometimes we denote with |S | the cardinality of S)

P(Rational(f))=P(NAE(f(x), f(y), f(z)) =1)=
3

4
− 3

4

∑

S⊆JnK

(

−1

3

)

|S |

f̂ (S)2

Two easy estimates are the following:

P(Rational(f))6
3

4
+

1

4
W1(f)

3

4

∑

S⊆JnK,#(S)>3

(

−1

3

)

|S |

f̂ (S)2

6
3

4
+

1

4
W1(f)+

1

36

∑

S⊆JnK,#(S)>3

f̂ (S)2

6
3

4
+

1

4
W1(f) +

1

36
(1−W1(f))=

7

9
+

2

9
W1(f)

and if f is odd (f(−x) = −f(x)) which is the case when f is neutral, then f̂ (S) = 0 if #S is
even and

P(Rational(f))=
3

4
− 3

4

∑

S⊆JnK,#S odd

(

−1

3

)

|S |

f̂ (S)2

=
3

4
+

3

4

∑

S⊆JnK,#S odd

(

1

3

)

|S |

f̂ (S)2 >
3

4
+

1

4
W1(f) .

If the function f is transitive then f̂ ({i})= f̂ ({j}) for all i, j ∈ JnK and

W1(f)=
∑

i

f̂ ({i})2 = n f̂ ({1})2 =
1

n

(

∑

i

∣

∣ f̂ ({i})
∣

∣

)

2
.

Lemma 4. The quantity
∑

i
f̂ ({i}) is maximized by the majority function.

Proof.

∑

i

f̂ ({i})=E

[

∑

i

xi f(x)
]

6E

[

∣

∣

∣

∣

∑

i

xi

∣

∣

∣

∣

]

with equality only if f(x) = sgn(
∑

i
xi), the majority function. �
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Remark 5. Note that as n→∞ by the CLT we have n−1/2∑

i
xi→G∼N (0, 1) in law so that

n−1/2
E

[

∣

∣

∣

∣

∑

i

xi

∣

∣

∣

∣

]

→E[|G|] = 2

2π
√

∫

0

∞

xe−x2/2dx =
2

π

√

∫

0

∞

e−zdz =
2

π

√

.

The quantity
∑

i
f̂ ({i}) has the following meaning

P(xi = f(x))=E

[

1

2
+

1

2
xif(x)

]

=
1

2
+

1

2
f̂ ({i}).

Exercise 2. Show that majority is the only transitive social choice function between two alternatives which

maximize

E[#(xi = f(x))]

i.e. the expected number of voters which agree with the social choice.

Then we can conclude that at least asymptotically as n→∞

W1(f) 6
1

n

(

E

[

∣

∣

∣

∣

∑

i

xi

∣

∣

∣

∣

])

2

→ 2

π

and

P(Rational(f))6
7

9
+

2

9
W1(f)→ 0.919

and for the majority function

P(Rational(f))>
3

4
+

1

4
W1(f)→ 0.909

Actually it is possible to provide an exact asymptotic for P(Rationality) in the case of the
majority function. To do this we need to introduce the noise operator Tρ which will also play an
important rôle in the analysis of noise stability of Bfs.

The noise operator

Fix ρ ∈ [−1, 1] the noise operator Tρ is a linear operator defined on functions on Ωn by the for-
mula

Tρf(x) =E[f(x y)]

where y = (y1, 	 , yn) is a vector of n independent random variables taking values in ±1 such
that P(yi =+1)= (1 + ρ)/2.

Exercise 3. Show that T0f(x) = E[f(y)], T1f = f and TρϕS = ρ#(S)ϕS where ϕS is the parity function on

S ⊆ JnK. Show also that E[Tρf ] =E[f ].

Lemma 6. We have TρϕS = ρ|S |ϕS and

Tρf(x)=
∑

S⊆JnK

ρ|S |f̂ (S)xS .
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Proof.

E[(x y)S] = xSE[yS] = xS(E[y1])
|S | =xS

(

1 + ρ

2
− 1− ρ

2

)

|S |

= xS ρ|S |

and the second formula holds by linearity of the noise operator acting on the Fourier transform
of f . �

Exercise 4. Use Lemma 6 to show that TρTσ = Tρσ for all ρ, σ ∈ [−1, 1].

We introduce also the notion of stability of a function on the cube Ωn:

Sρ(f)=E[fTρf ] =Pρ(f(x)= f(y))−Pρ(f(x)� f(y))

where here (x, y) is a random pair on Ωn
2 such that x is uniform and P(xi = yi) = (1 + ρ)/2.

Note that we have also

Pρ(f(x)= f(y))=
1

2
+

1

2
Stabρ(f).

In terms of the Fourier transform of f

Sρ(f)=
∑

S⊆JnK

ρ|S |f̂ (S)2

so the probability of rationality of f can be written as

P(Rational(f)) =
3

4
− 3

4

∑

S⊆JnK

(

−1

3

)

|S |

f̂ (S)2 =
3

4
− 3

4
S−1/3(f).

Example 7. Sρ(Dicti) = ρ, Sρ(ϕJnK) = ρn. This shows that the parity function is not stable
since when n≫ 1/(1− ρ) we have that the correlation between ϕJnK and TρϕJnK is quite small.

For the majority function we have the following formula.

Lemma 8. (Sheppard, 1899) For all ρ∈ [0, 1], as n→∞,

Sρ(Majn)→ 1− 2

π
arccos(ρ).

Proof. We write Sρ(Majn) = 2 Pρ(Majn(x) = Majn(y)) − 1. Then we let Xn = (x1 + 
 + xn)/

n1/2 and Yn = (y1 + 
 + yn)/n1/2. By the two-dimensional CLT applied to the sequence of
random vectors (Xn, Yn) we have that

Pρ(Majn(x)=Majn(y))→Pρ(sgn(X) = sgn(Y ))

where (X, Y ) is a two-dimensional centered Gaussian random variable such that

E[X2] =E[Y 2] = 1, E[X Y ] = ρ.
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But now

Pρ(sgn(X)= sgn(Y ))=Pρ(X > 0, Y > 0)+Pρ(X < 0, Y < 0).

and the pair (X, Y ) has the same law as the pair (X, cos (θ) X + sin (θ) W ) where (X, W ) is a
uncorrelated couple and cos (θ) = ρ. Then

Pρ(sgn(X)= sgn(Y ))=P(cos (θ)X + sin (θ)W > 0, X > 0) +P(cos (θ)X + sin (θ)W < 0, X < 0)

and by a rotational symmetry argument this last probability is easily seen to correspond to the
ratio (π − θ)/π so that at the end we get

Pρ(Majn(x) =Majn(y))→ 1− θ

π
= 1− arccos (ρ)

π

which gives the result. �

For ρ = 1− ε with ε≪ 1 we have Sρ(Majn)∼ 1− 4ε1/2/π so that with ε noise on the recording of

votes the majority function gives only 2ε1/2/π probability of having the wrong winner.

Moreover we can now state the precise asymptotics for the rationality with majority function

P(Rational(f))→ 3

4
− 3

4

(

1− 2

π
arccos

(

−1

3

))

=
3 arccos (−1/3)

2 π
≃ 0.912 .

This was first stated by Guilbaud [G. Guilbaud. Les théories de l’intérêt général et le problème
logique de l’agrégration. Economie appliquée, 5:501–584, 1952].

Hypercontractivity, take two

The aim of this paragraph is to prove the more general hypercontractivity estimate contained in
the following theorem

Theorem 9. (Bonami-Gross-Beckner) For all ρ, p, q such that (q − 1)/(p − 1) 6 ρ−2 we

have

‖Tρf ‖q 6 ‖f ‖p .

To prove the BGB inequality we first observe that the operator Tρ can be obtained as the com-

position of the operators Tρ
(i)

defined as

Tρ
(i)

f(x)=E[f(x1,	 , xi yi,	 , xn)]

where yi =±1 is such that P(yi =1)= (1 + ρ)/2. Then

Tρf = Tρ
(1)
Tρ

(n)
f

and each operator Tρ
(i)

acts only on the i-th coordinate. By elementary properties of the Lp

spaces on product measures we have

Lp(Ωn;R)= Lp(Ω; Lp(Ωn−1;R))
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and if we assume that
∥

∥

∥Tρ
(i)

fi,x

∥

∥

∥

Lq(Ω;R)
6 ‖fi,x‖Lp(Ω;R) (1)

where fi,x(yi) = f(x1,	 , yi,	 , xn) (the yi is at the i-th position) is a function on Ω = {±1} then
the norm 1 property transfer to the whole Tρ operator. Then we can compute

‖Tρf ‖Lq(Ωn) = (Ex1,	 ,xn
[ |Ey1,	 ,yn

f(x1y1, x2 y2,	 , xn yn)|q])1/q

=
∥

∥

∥‖Ey1
Ey2,	 ,yn

f(x1y1, x2 y2,	 , xn yn)‖Lx2,	 ,xn

q

∥

∥

∥

Lx1

q

by Minkonswki inequality (convexity of norm) we get

6

∥

∥

∥Ey1
‖Ey2,	 ,yn

f(x1y1, x2 y2,	 , xn yn)‖Lx2,	 ,xn

q

∥

∥

∥

Lx1

q

by the Hypercontractivity inequality on the first coordinate:

6

∥

∥

∥‖Ey2,	 ,yn
f(x1, x2 y2,	 , xn yn)‖Lx2,	 ,xn

q

∥

∥

∥

Lx1

p

=

∥

∥

∥

∥

∥

∥

∥‖Ey2
Ey3,	 ,yn

f(x1, x2 y2,	 , xn yn)‖Lx3,	 ,xn

q

∥

∥

∥

Lx2

q

∥

∥

∥

∥

Lx1

p

6

∥

∥

∥

∥

∥

∥

∥‖Ey3,	 ,yn
f(x1, x2,	 , xn yn)‖Lx3,	 ,xn

q

∥

∥

∥

Lx2

p

∥

∥

∥

∥

Lx1

p

=
∥

∥

∥‖Ey3,	 ,yn
f(x1, x2,	 , xn yn)‖Lx3,	 ,xn

q

∥

∥

∥

Lx1,x2

p

by repeating inductively the same argument we finally obtain

6‖f(x1,	 , xn)‖Lx1,	 ,xn

p = ‖f ‖p .

Note that in this argument for ease of notation we denoted with Lx1,	 ,xn

p the space and the Lp

norm on functions over the variables x1, 	 , xn taken with uniform distribution over all the pos-
sible outcomes.

It remains only to prove eq. (1) for the one-dimensional operators. Note first that we can con-
sider only positive functions since ‖Tρf ‖q 6 ‖Tρ|f |‖q 6 ‖|f |‖p = ‖f ‖p. Any f : Ω → R+ can be
written as (modulo a multiplicative constant)

f(x) =1 + ax

where |a|6 1 so

‖Tρf ‖q = ‖1 + a ρx‖q =

(

(1 + a ρ)q + (1− a ρ)q

2

)

1/q

and

‖f ‖p =

(

(1+ a)p +(1− a)p

2

)

1/p
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So it remains to prove that for the right range of parameters and for all a∈R :

(

(1+ a ρ)q + (1− a ρ)q

2

)

1/q

6

(

(1+ a)p +(1− a)p

2

)

1/p

Note that when a = 0 the inequality is trivially verified and when a ≪ 0 by series expansion we
get

(1 + a ρ)q + (1− a ρ)q

2
= 1 +

q(q − 1)

2
a2ρ2 +O(a4)

and
(

(1 + a ρ)q + (1− a ρ)q

2

)

1/q

= 1+
(q − 1)

2
a2ρ2 + O(a4)

and similarly
(

(1+ a)p +(1− a)p

2

)

1/p

= 1+
(p− 1)

2
a2 +O(a4)

so that the inequality can be verified only if

(q − 1)ρ2 6 (p− 1).

A more technical argument allows to prove that this is a sufficient condition for the validity of
the inequality for all |a|6 1.

Influences and the Kahn-Kalai-Linial theorem

Kalai’s robust form of Arrow’s theorem tells us that we can’t hope for a fair election rule that
evades the Condorcet’s paradox with probability close to 1. Given this we would like to look at
fair election rules which give rational outcomes with the highest possible probability. In this
case we should decide what means exactly “fair” in this context. Of course a reasonable notion
of “fairness” should rule out dictators. A possibility would be to have a symmetric function
under a transitive group of permutations. In this way no elector is preferred over the others. A
weaker and more useful notion of fairness is provided by the condition of having “small influ-
ences”.

Definition 10. Given a Bf f we define the influence Infi(f) of the i-th variable as the quantity

Infi(f) =P(f(x)� f(x ei))

where (ei)j =(−1)Ii=j.

So Infi(f) is the probability that flipping the i-th input of f the outcome change. This notion
of “influence” or “power” of a voter was first introduced by Penrose [L. Penrose. The elementary
statistics of majority voting. J. of the Royal Statistical Society, 109(1):53-57, 1946] and later
rediscovered by the lawyer Banzhaf [J. Banzahf. Weighted voting doesn’t work: A mathematical
analysis. Rutgers Law Review, 19(2):317–343, 1965] and is usually called the “Banzhaf power
index” in the Social Choice literature. It has played a role in several United States court deci-
sions [D. Felsenthal and M. Machover. The Measurement of Voting Power: Theory and Prac-
tice, Problem and Paradoxes. Edward Elgar, 1998].

A function with τ -small influences is a Bf such that maxi∈JnK Infi(f) 6 τ . One of the most
important results for the class of functions with small influences is the Kahn-Kalai-Linial (KKL)
theorem. The quantity E(f)=

∑

i
Infi(f) is called “energy” of f .
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Theorem 11. (KKL) No Bf f with zero bias has o(log n/n)-small influences. More generally if

f is unbiased and has τ-small influences then E(f) >O(log (1/τ )).

The bounds in the theorem are saturated (for different constants) by the Tribesn function intro-
duced by Ben-Or and Linial [Ben-Or and Linial, Collective Coin Flipping in “Randomness and
Computation” (S. Micali ed.) Academic Press, New York, (1989), 91–115] which is defined by
partitioning the n electors into n/log (n) “tribes” of log (n) electors and returning 1 if at least
one of the tribes vote unanimously 1 and −1 otherwise.

�
log(n)

�n

log(n)

OR

AND

Figure 1. The Tribesn function

Exercise 5. Show that E[Tribesn]≃ 0 and that Infi(Tribesn)≃C logn/n.

To prove the KKL theorem we need some preliminary ingredients.

Lemma 12.

Infi(f)=
∑

S∋i

f̂ (S)2 E(f)=
∑

S⊆JnK

|S | f̂ (S)2

Proof. Define the discrete derivative Lif =(f(x)− f(x ei))/2. We start by computing

f(x ei)=
∑

S⊆JnK

f̂ (S)(−1)Ii∈SxS

and

Lif(x)=
f(x)− f(x ei)

2
=

1

2

∑

S⊆JnK

f̂ (S)xS((−1)Ii∈S − 1) =
∑

S⊆JnK,S∋i

f̂ (S)xS .

Then we observe that

Infi(f) =E[|Lif |2 ] =
1

4
E[(f(x ei)− f(x))2] =

∑

S⊆JnK,S∋i

f̂ (S)2

and

E(f)=
∑

i∈JnK

∑

S⊆JnK,S∋i

f̂ (S)2 =
∑

S⊆JnK

∑

i∈JnK

Ii∈Sf̂ (S)2 =
∑

S⊆JnK

|S | f̂ (S)2.

�
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Proof. (of the KKL theorem) I found this argument in an unpublished note of P. Pansu. Let
H = Te−1, then

E(Hf)=
∑

S⊆JnK,|S |>1

|S |e−2|S | f̂ (S)2 =
∑

S⊆JnK,|S |>1

g(|S |) f̂ (S)2

where g(x) = x e−2x is a concave function for x > 1. By Jensen’s inequality (using the fact that
∑

S⊆JnK,|S |>1
f̂ (S)2 =Var(f))

E(Hf)>Var(f)g





∑

S⊆JnK
|S | f̂ (S)2

Var(f)



= E(f)e−2E(f)/Var(f).

>E(f)exp(−2E(f)/Var(f)).

Now we apply the hypercontractivity estimate with q = 2 and p = 2/(1 + ε) with ε small to the
function Lif = (f(x)− f(x ei))/2∈ {−1, 0, 1}. Then

E[|HLif |2] 6 (E[|Lif |p])2/p = (E[|Lif |2])1/p = (Infi(f))2/p = Infi(f) ( Infi(f))ε

(Show that Li H = HLi). Which gives

E(H f)=
∑

i

E[|LiHf |2] =
∑

i

E[|HLi f |2] 6
∑

i

Infi(f) ( Infi(f))ε

6E(f)
(

max
i

Infi(f)
)ε

Then combining these two inequalities we get

exp (−2E(f))6

(

max
i

Infi(f)
)ε

If the function f has τ -small influences then

E(f)> O(log (1/τ )).

and if we let M =maxi Infi(f) then

e−2nM/Var(f) 6 M ε⇒−n M/Var(f)6 ε log (M)⇒M >O(log n/n)Var(f)

Indeed fix 0 < α < 1. Then if M > D Var(f) n−α we obviously have M > O(log n/n)Var(f) while
if M 6 DVar(f)n−α we obtain

nM/Var(f)>−ε log (M)>−ε log (D)− εVar(f)+ α log (n)

and then

M >Var(f)O(log n/n).

�

Another interesting property of Boolean functions related to total influence is the fact that it
measures the “support” of the function, that is, the size of the set of variables that essentially
determines the outcome. This is a theorem of Friedgut. A k-junta is a Boolean function with
depends at most on a subset of k 6 n variables (among the n possible)

9



Theorem 13. (Friedgut) Any Boolean function f is ε-close to a 2O(E(f)/ε)-junta.

Proof. We start by estimating the Fourier spectrum of f using the size of E(f) as in KKL. Fix
0 6 d 6n, then

∑

S⊆JnK,|S |>d

f̂ (S)2 6
1

d

∑

S⊆JnK,|S |>d

|S |f̂ (S)2 6
E(f)

d

Then let L = {i∈ JnK : Infi(f) 6 τ } for some fixed 06 τ 6 1. Then

∑

S⊆JnK,|S |6d,S∩L�∅

f̂ (S)2 6
∑

S⊆JnK,|S |6d,S∩L�∅

|S ∩L|f̂ (S)2

6
∑

i∈JnK

∑

S⊆JnK,|S |6d

Ii∈S∩Lf̂ (S)2 =
∑

i∈L

∑

S⊆JnK,|S |6d,S∋i

f̂ (S)2

6e2d
∑

i∈L

∑

S⊆JnK,|S |6d,S∋i

e−2|S |f̂ (S)2

6e2d
∑

i∈L

∑

S⊆JnK,S∋i

e−2|S |f̂ (S)2 = e2d
∑

i∈L

‖LiHf ‖2
2 = e2d

∑

i∈L

E[|LiHf |2]

6e2d
∑

i∈L

Infi(f) (Infi(f))σ
6 e2d τσ E(f)

Then we can choose τ = (εe−2d/2)1/σ and d = 2 E(f)/ε to have

∑

|S |6d,S⊆J

f̂ (S)2 > 1− ε.

At this point it is enough to show that the function g = sgn(h) where

h(x)=
∑

|S |6d,S⊆Lc

f̂ (S)xS

is ε-close to f . When f � g we have that f , h do not have the same sign so (f − h)2 > 1 but if

P(f = g)> ε then E[(f − h)2] >P(f � g) > ε. So it is enough to prove that E[(f − h)2] 6 ε which
means that

E[(f − h)2] =
∑

S:|S |>d or S∩L�∅

f̂ (S)2 6ε

which is exactly what we have. The support of the function h (and thus of the function g) is of
size M = |Lc|. This means that E(f)> M τ which gives

M 6 E(f)/τ 6 (2/ε)1/σE(f)e4E(f)/εσ 6 2O(E(f)/ε)

as claimed. �

We will apply now eq.(2) to show the following remarkable property of balanced election
schemes:
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Theorem 14. In any balanced election scheme there is a coalition of fractional size at most

O(1/logn) which controls the election with probability 0.99.

In order to formulate properly this fact we introduce the notion of influence InfJ(f) of a coali-
tion J ⊆ JnK on the Boolean function f as the probability that the random function

{±1}J ∋ x� fJ(x)= f(y ⊗J x)

is not constant when y is chosen uniformly in Ωn and (y ⊗J x)i = yi if i∈J and (y ⊗J x)i = xi if
i ∈ J is the insertion of the values x ∈ {±1}J in the vector y ∈ {±1}n at the positions specified
by the set J . So

InfJ(f) =Py(∃x, x′∈{±1}J such that f(y ⊗J x)� f(y ⊗J x′)).

Note that Inf{i}(f)= Infi(f) (the influence of the i-th individual).

We define also the partial influences toward ±1 as

InfJ
±(f) =Py(∃x∈ {±1}J such that f(y ⊗J x)=±1)−P(f =±1).

Define A± = {∃x ∈ {±1}J such that f(y ⊗J x) =±1} and B± = {f(y) = ±1} then it is clear that
B±⊆A± and this implies that

InfJ
±(f)=Py(A

±\B±)∈ [0, 1] .

Moreover we can easily show that

{∃x, x′∈{±1}J such that f(y ⊗J x)� f(y ⊗J x′)}=C+∪C−

where C±= A±\B±= {f(y)=∓1, ∃x∈{±1}J such that f(y ⊗J x) =±1} giving

InfJ
+(f)+ InfJ

−(f)= InfJ(f).

Exercise 6. Prove that for a monotone function f we have

P(f+,i =1)=P(f = 1) +
1

2
Infi(f) (2)

where f+,i(x)= f(x1,	 , xi−1, +1, xi+1,	 ., xn) = f(x⊗{i} (+1)).

Theorem 14 readily follows form the next lemma.

Lemma 15. If f is such that Var(f) > O(1) then for all ε > 0 there exists a coalition J ⊆ JnK of

size at most O(log 1/ε)n/log n such that InfJ(f) > 1− ε.

Proof. We will assume that f is monotone (an independent argument will allow to lift this
hypothesis). Consider the following algorithm.

Given f with P(f = 1) = p ∈ [1 − 2 δ, 1− δ] then Var(f) = 1−E[f ]2 = 1− p2 > 1 − (1− δ)2 > 2 δ.
By KKL in the form of eq. (2) we know that there exists a coordinate i with influence γ >

C δ log n/n at least. If we look at the restriction f+,i: Ωn−1→{±1} where we have fixed the i-th
coordinate to +1, by eq. (2) we have

P(f+,i = 1)= p + γ/2> p + Cδ log n/n > 1− 2 δ +C δ logn/n
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Substitute f+,i → f and repeat the process until P(f = 1) > 1 − δ. So if we repeat the process r

times where

1 =O(1)
∑

k=n−r

r
log k

k
=O(1)(log2 n− log2 (n− r)).

But setting ξ = r/n,

log2 n− log2 (n− r)= log2 n−(log n + log (1− ξ))2 =−2 log n log (1− ξ)− log2 (1− ξ)

∼2 logn ξ + O(ξ2)

so that we must require ξ ∼ 1/log n and we get that repeating the process n/log n times we pass
from a function which has P(f = 1) = 1 − 2 δ to a function such that P(f = 1) = 1 − δ. Iterating
this block of selections n times we can pass for a function with P(f = 1) = 1 − 2n δ to a function
with P(f = 1) = 1 − δ. This means that in at most log (1/ε) iterations we can take any Boolean
function to a function with P(f = 1) = 1 − ε. Along the way we have selected a coalition J con-
taining O(1) (n/log n) log 1/ε individuals. Since we have started from P(f = 1) = 1/2 (balanced
function we got a function f with InfJ

+(f) = 1/2 − ε. In the same way we can work with {f = −
1} to select a coalition J ′ with as many individuals as J such that InfJ ′

−(f) = 1/2 − ε. Summing
these together we get InfJ∪J ′(f)> 1− 2ε, completing the proof. �
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