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Noise sensitivity and Social Chaos

As we have already seen, a Bf f : {±1}n → {±1} can encode a neutral social choice function F :

Lm
n → {±1}n(n−1)/2 among m alternatives which satisfy the IIA assumption. Between choice a

and b society will prefer a to b if f(xa,b) = 1 where xi
a,b = 1 if the i-th individual prefer a to b

and −1 otherwise. In the following we will assume that f is monotone.

Each Bf f represent a simple voting game where n players (electors) vote to elect some candi-
date. Each of such games is defined by a function v: P(JnK) → {0, 1} such that v(S) = 1 if S ⊆
JnK is a winning colation of voters (that is if the fact that all element in S vote for a candidate
results in his election) otherwise the colalition is a losing one. We assume that v(∅) = 0 and
v(JnK) = 1 and that S ⊆ R, v(S) = 1 ⇒ v(R) = 1. The game is proper if v(S) + v(Sc) 6 1 and
strong if v(S) + v(Sc) = 1. A strong simple game is represented by the Bf f(x) = 2v({i: xi =
1})− 1 which is monotone and odd. In the following we will consider only these functions.

We write Pcyc(f) for the probability that the neutral IIA social choice function over 3 alterna-
tives (or equivalently the strong simple game G) leads to cyclic social preferences as in the
Arrow’s theorem. For 3 alternatives we have 8 possible outcomes for the social choice function of
which 2 are cyclic. Under our assumptions and uniform individual preference profiles all the
non-cyclic and all the cyclic social profiles have the same probability so if we choose a profile at
random we have 1/4 probability to obtain a cyclic result. This motivates the following defini-
tion.

Definition 1. We say that a sequence (fn)n of strong simple games leads to social chaos iff

Pcyc(fn)→ 1/4.

Recall that Arrow’s theorem imply that Pcyc(fn) > 0 unless fn is a dictatoriship and that if fn is
the simple majority function then, as we have already seen,

Pcyc(fn)=
1

4
+

3

2π
arcsin

(

1

3

)

≃ 0.08744.

A remarkable observation is that this notion of social chaos is tightly linked with the notion of
noise-sensitivity. Let Nρ(f) = Pρ(f(x) � f(y)) where under Pε the vector x is uniformly drawn
over {±}n and yi =±xi with probability (1± ρ)/2 independently for each coordinate i = 1,	 , n.
The value Nρ(f) is the probability that random errors will affect the outcome of the election
ruled by f .

Definition 2. We say that a sequence (fn)n of strong simple games is asymptotically noise-sen-

sitive iff ∀06 ρ < 1,

Nρ(fn)→ 1/2.

Here 1/2 corresponds to the case that f(x) and f(y) are drawn at random independently: the
errors affecting the counting of the votes of each individual induce a result f(y) for the election
which has noting to do with the “real” outcome f(x). Observing f(y) does not say anything on
f(x).
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Theorem 3. (Kalai) Social chaos is equivalent to noise-sensitivity.

Proof. The function fn is odd so Wk(fn) = 0 for all even n > 0. Recall the Fourier representa-
tion for Pcyc(fn):

Pcyc(fn) =1−P (Rational(f))= 1− 3

4
+

3

4

∑

S⊆JnK

(

−1

3

)

|S |

f̂ (S)2

=
1

4
− 1

4

∑

k=1

n (

1

3

)

k−1

Wk(fn)

since there are contributions only from k odd. On the other hand

Nρ(fn)=Pρ(fn(x)� fn(y))=Eρ

(

1− fn(x)fn(y)

2

)

=
1

2
− 1

2

∑

S⊆JnK

f̂n(S)2ρ|S |

=
1

2
− 1

2

∑

k=0

n

ρk Wk(fn)=
1

2
− 1

2

∑

k=1

n

ρk Wk(fn).

since W0(fn)= 0. Then

2Pcyc(fn)+ 1= 3N1/3(fn)

which implies that if N1/3(fn) → 1/2 then Pcyc(fn) → 1/4. Now assume that Pcyc(fn) → 1/4,
then

0 6
∑

k=1

n (

1

3

)

k

Wk(fn)→ 0

which means that for each k we have Wk(fn) → 0. Now note that
∑

k=1
n

Wk(fn) = 1 so for any
ℓ <n

∑

k=1

n

ρk Wk(fn)=
∑

k=1

ℓ

ρk Wk(fn)+
∑

k=ℓ+1

n

ρk Wk(fn)

6
∑

k=1

ℓ

Wk(fn) + ρℓ+1→ ρℓ+1

since each Wk(fn)→ 0. Given that ℓ is arbitrary we obtain
∑

k=1
n

ρk Wk(fn)→ 0 as required.

�

Let us now discuss the relation of noise sensitivity with the Banzahf power index. The Banhazf
power bi(G) of the i-th individual in the strong simple game G is defined as the probability that
this individual is pivotal, that is for a random coalition S not containing i it is the case that S

is a losing coalition while S ∪ {i} is a winning one, namely that i can make a difference. Let
bmax(G) = maxi bi(G) and bmin(G) = mini bi(G) the maximum and minimum Banzahf power of
the individuals in the game G and let I(G) =

∑

i
bi(G).

Exercise 1. Show that I(G) is the influence (or energy) E(f) of the corresponding Bf f .
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We already know that I(G) is maximized by the simple majority game, indeed for monotone Bf
f we have

Dif = f(x1,	 , xi−1, +1, xi+1,	 , xn)− f(x1,	 , xi−1,−1, xi+1,	 , xn)

=2
∑

S∋i

f̂ (S)xS\{i}∈ {0, 2}

Infi(f) =P(Dif(x) =2)=
1

2
E[Dif(x)] = 2 f̂ ({i}).

E(f)= 2
∑

i

f̂ ({i})= 2W1(f)

and we have already seen that W1(f) is maximized by the majority function and that

W1(Majn)=
2

π
n

√

+ o( n
√

).

Theorem 4. If a sequence of strong simple games (Gn)n leads to social chaos then it has

diminishing individual Banzhaf power, i.e.

bmax(Gn)→ 0.

Proof. Assume that bmax(Gn) stay bounded away from zero (maybe take a subsequence so that
this happens). Then the outcome of the game has substancial (i.e. bounded away from zero)
correlation with one of the influential players which has substancial probability of not being
affected by the noise. So the correlation of the outcomes before and after the action of the noise
will be equally bounded away from zero contradicting the hypothesis of social chaos (which we
showed equivalent to noise sensitivity). �

A sequence of games has a bouned power ration if bmax(Gn)/bmin(Gn) is uniformly bounded.

Benjamini-Kalai-Schramm proved the following very important characterization of noise-sensi-
tive functions

Theorem 5. (Benjamini-Kalai-Schramm) The sequence (fn)n of Bf is noise-sensitive iff

∑

i

(Infi(fn))2→ 0.

From this result we can infer that

Theorem 6. The sequence of strong simple games (Gn)n with bouned power ratio leads to social

chaos iff

I(Gn)/ n
√ → 0.

Proof. Note that

I(Gn)2

n
6Jensen

∑

i

(Infi(fn))2 6 bmax(Gn)2 n =

(

bmax(Gn)

bmin(Gn)

I(Gn)

n
√

)

2

so the claim is a direct consequence of the BKS theorem. �
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Another source of social chaos is given by bias.

Theorem 7. If E[fn]→±1 then the sequence of strong simple games Gn is noise-sensitive.

Proof. �

An example of social chaos

An example of a social welfare function which exhibit social chaos is given by a two-level voting
method where the lower level is biased due to supermajority. Assume we have a b voters divided
into a communities of b voters. Given subset S and a community C we call C positive if |S ∩
C |> t and negative if |S ∩C |> b − t. The subset S is a winning coalition if there are more posi-
tive than negative communities. Let Gn = Gn(an, bn, tn) a sequence of such games. Then we can
choose tn in such a way that the probability pn that a community is positive goes to zero as n→
∞.

We have the following

Theorem 8. Assume that bn→∞ and that ... then the sequence Gn leads to social chaos.

Proof. �
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