Examen 2009

[Durée une heure et demi. Aucun document n'est autorisé. Tous les exercices sont independantes. Seule les reponses soigneusement justifiées seront prise en compte.]

1. Vendre un bien avec actualisation du future

Soit $(X_n)_{n\geqslant 1}$ une suite iid avec $\mathbb{E}[|X_n|]<+\infty$ et $\mathcal{F}_n=\sigma(X_1,...,X_n)$ la filtration associée. Soit $\beta\in]0,1[$ on veut résoudre le problème d'arrêt optimal pour le processus $Y_n=\beta^nX_n$. C'est la situation où on reçoit des offres X_n pour un bien à vendre et on considère le gain en prenant en compte un facteur d'actualisation β . C'est naturel de poser $Y_\infty=0$.

- a) Montrer que $\mathbb{E}[(\sup_{n\geq 1} Y_n)_+] < \infty$.
- b) Montrer que $\lim_{n\to\infty} Y_n = 0$.
- c) Soit T un t.a., montrer que $\tilde{T}=\inf\{n\geqslant 1\colon \mathbb{E}[Y_T|\mathcal{F}_n]\leqslant Y_n\}$ est un t.a. et que $\mathbb{E}[Y_{\tilde{T}}]\geqslant \mathbb{E}[Y_T]$.
- d) Rappeler la definition de t.a. régulier et montrer que \tilde{T} est régulier.
- e) Expliquer pourquoi on est bien dans un cadre Markovien.
- f) Soit $v_n(x) = \sup_{T \geqslant n} \mathbb{E}[Y_T | X_n = x]$ la fonction valeur. À partir du principe d'optimalité générale pour $V_n^* = \operatorname{esssup}_{T \geqslant n} \mathbb{E}[Y_T | \mathcal{F}_n]$ retrouver la forme simplifiée du principe d'optimalité dans le cadre Markovien:

$$v_n(x) = \max(y_n(x), \mathbb{E}[v_{n+1}(X_{n+1})|X_n = x]).$$

- g) Montrer que dans ce problème $v_n(x) = \beta^{n-1}v_1(x)$.
- h) On admet que $T^* = \inf\{n \ge 1 : y_n(X_n) = v_n(X_n)\}$ est un t.a. optimal pour le problème. Montrer qui si T^{\flat} est un autre t.a. optimal, alors on doit avoir $T^* \le T^{\flat}$ presque sûrement (suggestion: commencer par montrer que sur l'evenement $\{T^{\flat} = n\}$ on a $Y_n = V_n^*$).
- i) Montrer que dans ce problème le t.a. optimal T^* peut être mis dans la forme

$$T^* = \inf\{n \geqslant 1: X_n \geqslant \ell\}$$

et que ℓ satisfait $\ell = \beta \mathbb{E}[\max(X_1, \ell)].$

- j) Expliquer le lien entre le seuil ℓ et le gain moyen optimal $V^* = \sup_{T \ge 1} \mathbb{E}[Y_T]$.
- k) Donner une expression pour ℓ dans le cas $X_n \sim \mathcal{U}([0,1])$ et $\beta = 1/2$.

2. N'est jamais trop tard pour s'arrêter.

Soit $(X_n)_{n\geqslant 1}$ une suite iid de v.a. Bernoulli(1/2). On considère le processus des gains

$$Y_n = (2^n - 1)X_1 \cdots X_n$$
, $Y_{\infty} = 0$.

- a) Montrer que $\limsup_{n\to\infty} Y_n \leqslant Y_\infty$.
- b) Montrer que $\mathbb{E}[\sup_{n\geqslant 1} Y_n] = +\infty$.
- c) Montrer que le problème d'arrêt associé n'admet aucun t.a. optimal