Rattrapage

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independants. Seules les reponses soigneusement justifiées seront prises en compte.]

Exercice 1. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov homogène sur l'espace d'états dénombrable \mathcal{M} et de matrice de transition $P \colon \mathcal{M} \times \mathcal{M} \to [0, 1]$. Montrer que les processus suivantes sont des chaînes de Markov homogènes et préciser leurs matrices de transition:

- a) $W_n = X_{n+4}, \ n \ge 0$;
- b) $Y_n = X_{4n}, n \ge 0$;
- c) $Z_n = X_{T_n}$, $n \ge 0$ où $T_n = S_1 + \dots + S_n$, $T_0 = 0$ et $(S_n)_{n \ge 1}$ est une suite iid à valeurs dans $\{1, 2, 3, \dots\} = \mathbb{N} + 1$.
- d) $Q_n = (X_n, X_{n+1}), n \ge 0$ (remarquons que $(Q_n)_{n \ge 0}$ est un processus sur l'espace d'états $\mathcal{M}^2 = \mathcal{M} \times \mathcal{M}$).

Exercice 2. Soit $(Y_n)_{n\geqslant 1}$ une suite de v.a. positives $(Y_n>0)$, indépendantes et telles que $\mathbb{E}[Y_n]=1$. Soit $\mathcal{F}_n=\sigma(Y_1,...,Y_n),\ n\geqslant 1$ et $\mathcal{F}_0=\{\varnothing,\Omega\}$ la filtration naturelle des Y_n . Posons $X_0=1$ et $X_n=\prod_{i=1}^n Y_i$.

- a) Montrer que $(X_n)_{n\geqslant 0}$ est une martingale par rapport à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$. En déduire que $(\sqrt{X_n})_{n\geqslant 0}$ est une sur-martingale pour la même filtration.
- b) On suppose que

$$\prod_{k=1}^{\infty} \mathbb{E}[\sqrt{Y_k}] = 0.$$

Montrer que la suite $(\sqrt{X_n})_{n\geqslant 0}$ converge et déterminer la limite (Sugg: utiliser le lemme de Fatou).

- c) En déduire la convergence presque sûre de la suite $(X_n)_{n\geqslant 0}$. Montrer que $(\sqrt{X_n})_{n\geqslant 0}$ ne converge pas dans $L^1(\Omega, \mathbb{P})$.
- d) On suppose maintenant que

$$\prod_{k=1}^{\infty} \mathbb{E}[\sqrt{Y_k}] > 0.$$

Montrer que $(\sqrt{X_n})_{n\geq 0}$ est une suite de Cauchy dans $L^2(\Omega, \mathbb{P})$.

e) En déduire que $(X_n)_{n\geqslant 0}$ est une suite de Cauchy dans $L^1(\Omega, \mathbb{P})$ et aussi qu'elle converge dans $L^1(\Omega, \mathbb{P})$.

Exercice 3. Soit $(X_n)_{n\geqslant 0}$ la chaîne de Markov sur $\mathcal{M} = \{1, 2, 3, 4, 5, 6\}$ de matrice de transition

$$P = \left(\begin{array}{cccccc} 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 0.5 & 0.5 & 0 \\ 0.5 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 0.5 & 0.5 \end{array}\right)$$

- a) Déterminer les classes de communication et classifier les états en transients ou récurrents.
- b) La chaîne est-elle irréductible?
- c) Soit $T_x = \inf \{n > 0 : X_n = x\}$. Calculer $\mathbb{P}(T_1 = n | X_0 = 5)$ et $\mathbb{P}(T_6 = n | X_0 = 5)$ pour tout $n \ge 1$.
- d) Calculer $\mathbb{P}(T_4 < T_5 | X_0 = 3)$.
- e) Déterminer les probabilités invariantes de la chaîne.
- f) Soit $u(x) = \mathbb{E}_x[T_5]$ pour tout $x \in \mathcal{M}$. Déterminer l'équation linéaire satisfaite par u.