Rattrapage

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont indépendants. Seules les reponses soigneusement justifiées seront prises en compte.]

Exercice 1. Soit $\{A_1, A_2, ...\}$ une partition (finie ou infinie) de Ω . Soit $\mathcal{B} = \sigma(A_1, ...)$ la tribu engendrée par cette partition.

- a) Décrire la tribu $\sigma(A_1)$ et $\sigma(\{A_1, A_2\})$
- b) Décrire la tribu \mathcal{B}
- c) Donner la forme generale d'une v.a. Z qui est mesurable par rapport à \mathcal{B}
- d) Donner la formule explicite pour $\mathbb{E}(X|\mathcal{B})$.

Exercice 2. Soit $Z \sim \mathcal{E}(1)$ une v.a. exponentielle de paramètre 1 et t > 0. Soit $X = \min(Z, t)$ et $Y = \max(Z, t)$. Calculer $\mathbb{E}[Z|X]$ et $\mathbb{E}[Z|Y]$.

Exercice 3. Soit $(X_n)_{n\geqslant 1}$ une suite iid telle que $\mathbb{P}(X_n=1)=1-\mathbb{P}(X_n=-1)=p\in(0,1)$ avec $p\neq 1/2$. On pose $S_0=0$ et pour tout $n\geqslant 1$, $S_n=S_{n-1}+X_n$. On note $(\mathcal{F}_n)_{n\geqslant 0}$ la filtration engendrée par la suite $(S_n)_{n\geqslant 0}$.

- a) Soit $\varphi(x) = ((1-p)/p)^x$ pour tout $x \in \mathbb{Z}$ et $M_n = \varphi(S_n)$ pour tout $n \ge 0$. Montrer que $(M_n)_{n \ge 0}$ est une martingale pour $(\mathcal{F}_n)_{n \ge 0}$.
- b) On pose $T_x = \inf \{n \ge 0 : S_n = x\}$ pour tout $x \in \mathbb{Z}$. Montrer que T_x est un temps d'arrêt pour la filtration $(\mathcal{F}_n)_{n \ge 0}$.

Dans la suite on fixe $a, b \in \mathbb{Z}$ tels que a < 0 < b.

- c) Montrer que $T_{a,b} = \min (T_a, T_b)$ est un temps d'arrêt pour la filtration $(\mathcal{F}_n)_{n \geqslant 0}$ et qu'il est presque sûrement fini.
- d) Montrer que $\mathbb{E}[M_{T_{a,b}}] = \varphi(0)$.
- e) Montrer que

$$\mathbb{P}(T_a < T_b) = \frac{\varphi(b) - \varphi(0)}{\varphi(b) - \varphi(a)}.$$

Dans la suite on suppose que p < 1/2.

f) Montrer que

$$\mathbb{P}\Big(\min_{n\geqslant 0} S_n \leqslant a\Big) = \mathbb{P}(T_a < +\infty) = \left(\frac{1-p}{p}\right)^{-a}$$

et $\mathbb{P}(T_b < +\infty) = 1$. En déduire que $\mathbb{E}[\min_{n \geq 0} S_n] > -\infty$.

g) On pose $Z_n = S_n - (2p-1)n$ pour $n \ge 0$. Montrer que $(Z_n)_{n \ge 0}$ est une martingale.

h) Déduire de la question precedente que $(2p-1)\mathbb{E}[T_b]=\mathbb{E}[S_{T_b}]$ et calculer la valeur de $\mathbb{E}[T_b]$.

Exercice 4. Soit $(X_n)_{n\geqslant 0}$ la chaîne de Markov sur $\mathcal{M}=\{1,2,3,4,5,6,7,8\}$ de matrice de transition

- a) Déterminer les classes de communication et classifier les états en transients ou récurrents.
- b) La chaîne est-elle irréductible?
- c) Soit $T_x = \inf \{n > 0 : X_n = x\}$. Calculer $\mathbb{P}(T_1 = 4 | X_0 = 5)$ et $\mathbb{P}(T_8 = n | X_0 = 4)$ pour tout $n \ge 0$.
- d) Calculer $\mathbb{P}(T_7 < T_5 | X_0 = 6)$.
- e) Déterminer les probabilités invariantes de la chaîne.
- f) Soit $S = \min(T_1, T_6)$ et $u(x) = \mathbb{E}_x[S]$ pour tout $x \in \mathcal{M}$. Déterminer l'équation linéaire satisfaite par u (avec les conditions aux bords necessaires pour la résoudre).