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✽

Signature of a path

The signature S(𝛾) of a C1 path 𝛾: [0, 1]→ ℝd consists of the infinite sequence of iterated integrals of the
form

�
0⩽t1⩽⋯⩽tn⩽1

�̇�t1 ⊗⋯⊗�̇�tndt1⋯dtn.

It is a kind of nonlinear encoding of the path. In the classical work of K. T. Chen it is proven that the map
𝛾↦S(𝛾) is a homomorphism from the monoid of paths with concatenation to the tensor algebra over ℝd,
and that two piecewise regular paths without backtracks have the same signatures if and only if they differ
by a reparametrization and translation. Several possile bachelor thesis topics are grounded in this concept.

a) Inversion of the signature. It is possible to effectively reconstruct a path from its signature, giving
insights on how the properties of the path are encoded in the signature. Signature has become in
recent years an effective tool to encode geometry of paths in ways suitable to machine learning
algorithms.

⊳ Lyons, Terry, and Weijun Xu. 2014. “Inverting the Signature of a Path.” ArXiv:1406.7833
[Math], June. http://arxiv.org/abs/1406.7833.

⊳ Lyons, Terry, and Weijun Xu. 2015. “Hyperbolic Development and Inversion of Signature.”
ArXiv:1507.00286 [Math], July. http://arxiv.org/abs/1507.00286.

b) Signature of a random path. The normalized sequence of moments characterizes the law of any finite-
dimensional random variable. The first paper proves an analogous result for path-valued random
variables, that is stochastic processes, by using the normalized sequence of signature moments.
We use this to define a metric for laws of stochastic processes. This metric can be efficiently esti-
mated from finite samples, even if the stochastic processes themselves evolve in high-dimensional
state spaces. Possible application is a non-parametric two-sample hypothesis test for laws of sto-
chastic processes. The second paper continues the study of signature as characteristic of stochastic
processes looking at comulants and at a new characterisation of independence of multivariate sto-
chastic processes. As an application it obtains a family of unbiased minimum-variance estimators
of signature cumulant.

⊳ Chevyrev, I., 2013. A Set of Characteristic Functions on the Space of Signatures.
ArXiv:1307.3580, 2013. http://arxiv.org/abs/1307.3580.

⊳ Chevyrev, Ilya, and Harald Oberhauser. Signature Moments to Characterize Laws of Stochastic
Processes. ArXiv:1810.10971, 2018. http://arxiv.org/abs/1810.10971.

⊳ Bonnier, Patric, and Harald Oberhauser. Signature Cumulants, Ordered Partitions, and Indepen-
dence of Stochastic Processes. ArXiv:1908.06496, 2019. http://arxiv.org/abs/1908.06496.

c) Applications to machine learning. The specific algebraic properties of the signature make it a pow-
erful method of feature extraction for machine learning purposes.

⊳ Király, F.J., Oberhauser, H., 2016. Kernels for sequentially ordered data. arXiv:1601.08169.
http://arxiv.org/abs/1601.08169.
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⊳ Lyons, T., Oberhauser, H., 2017. Sketching the order of events. arXiv:1708.09708.
http://arxiv.org/abs/1708.09708

⊳ Chevyrev, I., Kormilitzin, A., 2016. A Primer on the Signature Method in Machine Learning.
arXiv:1603.03788. http://arxiv.org/abs/1603.03788

⊳ Chevyrev, I., Nanda, V., Oberhauser, H., 2018. Persistence paths and signature features in
topological data analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 1–1.
https://doi.org/10.1109/TPAMI.2018.2885516

⊳ Toth, C., Oberhauser, H., 2019. Variational Gaussian Processes with Signature Covariances.
arXiv:1906.08215. http://arxiv.org/abs/1906.08215

✽

Dynamics of the Ball–Box system with random initial condition

DYNAMICS OF THE BOX-BALL SYSTEM WITH RANDOM INITIAL CONDITIONS 4
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FIGURE 1. A two-soliton interaction of the box-ball system. (Time runs from
the bottom row to the top row.)

is a finite number of particles, that is, ∑n∈Z ηn < ∞. Without loss of generality, we can further
assume that each of these particles are sited on the positive axis, i.e. ∑n≤0 ηn = 0. In this case,

the evolution of the system is described by an operator T : {0,1}Z → {0,1}Z characterised by
the so-called ultradiscrete KdV equation:

(1.2) (T η)n = min

{

1−ηn,
n−1

∑
m=−∞

(ηm− (T η)m)

}

,

where we suppose (T η)n = 0 for n≤ 0, so the sums in the above definition are well-defined. In
words, we can view this action in terms of a particle ‘carrier’, which moves along Z from left to
right (that is, from negative to positive), picking up a particle when it crosses one, and dropping
off a particle when it is holding at least one particle and sees a space. The latter description
motivates the introduction of a ‘carrier process’ W = (Wn)n∈Z, where Wn records the number of
particles held by the carrier as it passes spatial location n. In particular, in this finite particle
setting, we set Wn = 0 for n≤ 0, and, for n≥ 1,

(1.3) Wn =

⎧

⎨

⎩

Wn−1 +1, if ηn = 1,
Wn−1, if ηn = 0 and Wn−1 = 0,
Wn−1−1, if ηn = 0 and Wn−1 > 0.

With this, the definition of the BBS at (1.2) can be rewritten

(1.4) (T η)n = min{1−ηn,Wn−1} .

We note that the dynamics of the BBS for a finite number of particles are well-defined for
all time, meaning we can define T kη for any k ≥ 0. Moreover, in the original paper [37], it
was observed that the dynamics are reversible, in that we can obtain η from T η by simply

running the carrier backwards, i.e. from right to left1, so that, in fact, T kη is well-defined for any
k ∈ Z (for this comment to be true, we drop the restriction that all the particles are to the right
of the origin). Furthermore, Takahashi and Satsuma described how any configuration could be
decomposed into a collection of ‘basic strings’ of the form (1,0), (1,1,0,0), (1,1,1,0,0,0), etc.,
which acted like solitons in that they were preserved by the action of the carrier, and travelled
at a constant speed (depending on their length) when in isolation, but experienced interactions
when they met. See Figure 1 for a simple example of a two-soliton interaction in the BBS.

1In this instance, we are using the term reversible in a dynamical systems sense. Later in the article, we will also

use the term reversible in a stochastic processes sense when describing various Markov chains. Although the two

meanings of reversible are distinct, how the term is meant to be interpreted should be clear from the context.

The box-ball system (BBS), introduced by Takahashi and Satsuma in 1990, is a cellular automaton that
exhibits solitonic behaviour. In this article, the BBS is studied when started from a random two-sided
infinite particle configuration. For such a model, Ferrari et al. recently showed the invariance in distribu-
tion of Bernoulli product measures with density strictly less than 1

2 , and gave a soliton decomposition for
invariant measures more generally. The BBS dynamics is studied using the transformation of a nearest
neighbour path encoding of the particle configuration given by `reflection in the past maximum'. The paper
characterise the set of configurations for which the dynamics are well-defined and reversible for all times
and gives simple sufficient conditions for random initial conditions to be invariant in distribution under
the BBS dynamics. Furthermore, various probabilistic properties of the BBS that are commonly studied
for interacting particle systems are studied, such as the asymptotic behavior of the integrated current of
particles and of a tagged particle. Finally, for Bernoulli product measures with parameter p↗ 1

2 (which may
be considered the `high density' regime), the path encoding has a natural scaling limit, which motivates the
introduction of a new continuous version of the BBS.

⊳ Croydon, David A., Tsuyoshi Kato, Makiko Sasada, and Satoshi Tsujimoto. 2018. “Dynamics
of the Box-Ball System with Random Initial Conditions via Pitman's Transformation,” June.
https://arxiv.org/abs/1806.02147.

✽

Regularity of almost every function in Sobolev spaces

In the space of continuous functions of a real variable, the set of nowhere differentiable functions has long
been known to be topologically ``generic”. In these papers it is shown further that in a measure theoretic
sense (which is different from Wiener measure), ``almost every'' continuous function belonging to given
functional spaces (like Holder or Sobolev) is as irregular as it can be. Let us give an example: recall that
f ∈C𝛼(x0) if there exists C <∞ such that

| f (x)−P(x −x0)|⩽C|x −x0|𝛼
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for |x −x0|⩽1. Then one can prove that for “almost every” f ∈C0
s(ℝd) one has that f ∈C𝛼(x0) for all x0 and

all 𝛼⩽ s but not 𝛼> s. When considering Soboles spaces there will be different regularities in different sets
of points, namely a generic function possess a “multifractal” spectrum.

⊳ Hunt, Brian R. 1994. “The Prevalence of Continuous Nowhere Differentiable Functions.” Proceed-
ings of the American Mathematical Society 122 (3): 711–17. https://doi.org/10.1090/S0002-9939-1994-
1260170-X.

⊳ Fraysse, Aurélia, and Stéphane Jaffard. 2006. “How Smooth Is Almost Every Function in a Sobolev
Space?” Revista Matemática Iberoamericana, 663–82. https://doi.org/10.4171/RMI/469.

⊳ Fraysse, A. 2010. “Regularity Criteria for Almost Every Function in Sobolev Spaces.” Journal of Func-
tional Analysis 258 (6): 1806–21. https://doi.org/10.1016/j.jfa.2009.11.017.

✽

Reciprocal processes

⊳ Léonard, Christian; Rœlly, Sylvie; Zambrini, Jean-Claude, Reciprocal processes. A measure-theoretical
point of view Probab. Surv. 11 (2014), 237–269. https://doi.org/10.1214/13-PS220

The bridges of a Markov process are also Markov. But an arbitrary mixture of these bridges fails to be
Markov in general. However, it still enjoys the interesting properties of a reciprocal process. The paper
reviews the main properties of reciprocal processes with emphasis on their time-symmetries. It follows
a measure-theoretical approach which allows for a unified treatment of the diffusion and jump processes.
Reciprocal processes are related to solutions of entropy minimizing problems on path space and where
inspired by the pioneering work of Schrödinger on the time reversal of quantum dynamics.

✽

Projections of SDEs onto Submanifolds

In the course “Foundations of stochastic analysis” we described SDE with values on the Euclidean space.
A more general notion of SDE is that taking values on an arbitrary smooth manifold which requires a
slightly different point of view. This thesis will investigate the problem of defining a notion of projection
of stochastic process unto a submanifold via stochastic calculus. There is not a unique solution and several
possibilities are explored.

⊳ J. Armstrong, D. Brigo, E.R. Ferrucci, Projections of SDEs onto Submanifolds- arXiv preprint
arXiv:1810.03923, 2018. https://arxiv.org/abs/1810.03923

For a general introduction to SDE on manifold see

⊳ Hsu, Elton P. Stochastic analysis on manifolds. Graduate Studies in Mathematics, 38. American Math-
ematical Society, Providence, RI, 2002. [Chapter 1 and 2]

✽

Derivation of thermodynamic laws from microscopic stochastic models

The laws of thermodynamics rules behaviour of systems which have a very large number of microscopic
degrees of freedom in statistical equilibrium. In particular it formalises the concept of heat and of properties
like “warmer” and “colder”. The suggested literature derives rigorously thermodynamic behaviour from a
system of coupled SDE as the number of components is sent to infinity. This thesis will allow to grasp con-
cepts like “energy”, “entropy”, “adiabatic transformations”, etc... within a rigorous mathematical model of
thermodynamics.

⊳ Olla, S., 2013. Microscopic Derivation of an Isothermal Thermodynamic Transformation.
arXiv:1310.0798. https://arxiv.org/abs/1310.0798
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⊳ Olla, S., Simon, M., 2015. Microscopic derivation of an adiabatic thermodynamic transformation. Braz.
J. Probab. Stat. 29, 540–564. https://doi.org/10.1214/14-BJPS275

✽

Finite dimensional filters

⊳ Cohen de Lara, M., Finite-dimensional filters. I. The Wei-Norman technique., SIAM J. Control
Optim. 35 (1997), no. 3, 980–1001.

⊳ Cohen de Lara, M., Finite-dimensional filters. II. Invariance group techniques., SIAM J. Control
Optim. 35 (1997), no. 3, 1002–1029.

For an introduction to the theory of stochastic filtering see

⊳ Bain, Alan; Crisan, Dan, Fundamentals of stochastic filtering., Stochastic Modelling and Applied Prob-
ability, 60. Springer, New York, 2009. [Chapters 2 and 3 (and also 4)]

✽

Game–theoretic probability (taken)

⊳ Shafer, Glenn, and Vladimir Vovk. 2001. Probability and Finance: It's Only a Game! 1 edition. New
York: Wiley-Interscience.

The aim of the thesis is to illustrate the proof of some central theorems of probability (like the law of large
numbers, the law of iterated logarithm, etc . . . ) in the game theoretic framework presented in the above
book. There probability theory is developed, not starting from measure theory, as usual, but by considering
betting systems between Nature and Skeptik whose “experiments” put to a test the hypothesised random-
ness of nature. Randomness is therefore defined as the impossibility of certain outcomes for these games.
Surprisingly this approach can go very far and gives a different perspective to the philosophical aspects of
a mathematical theory of randomness.

✽ ✽ ✽
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