Vorlesung 6 | 13.11.2020 | 10:15-12:00 via Zoom

In der letzten Vorlesung haben wir gesehen:

Messbarkeit, Zufallsvariablen, Einfacher Funktionen, Integration, Monotone Konvergenz.

Massraum (W-raum) $(\Omega, \mathcal{F}, \mu)$. Einfache (\mathcal{F} -messbare) Funktion $g: \Omega \to \mathbb{R}$

$$g(\omega) = \sum_{k=1}^{n} x_k \mathbb{1}_{A_k}(\omega)$$

Integral von g gegen einem Maß μ über die Menge Ω :

$$\int_{\Omega} g(\omega) d\mu(\omega) = \sum_{k=1}^{n} x_k \mu(A_k).$$

Erweiterung: $f: \Omega \to \mathbb{R}_{\geqslant 0}$ positive messbarer Funkion

$$\int_{\Omega} f \, \mathrm{d} \mu \coloneqq \sup_{g \leqslant f: g \in \mathcal{E}_+} \int_{\Omega} g \, \mathrm{d} \mu \in \mathbb{R} \cup \{+\infty\}.$$

 $f: \Omega \to \mathbb{R}$

$$\int_{\Omega} f d\mu := \int_{\Omega} f_{+} d\mu - \int_{\Omega} f_{-} d\mu$$

falls $\int_{\Omega} f_+ \mathrm{d}\mu < \infty$ oder $\int_{\Omega} f_- \mathrm{d}\mu < \infty$. f ist integrierbar wenn

$$\int_{\Omega} |f| \mathrm{d}\mu = \int_{\Omega} f_{+} \mathrm{d}\mu + \int_{\Omega} f_{-} \mathrm{d}\mu < \infty.$$

 $L^1(\Omega, \mathcal{F}, \mu) \equiv \text{Vektorraum integrierbare Funktionen.}$

Wichtige Sätze:

- 1. Satz der monotone Konvergenz
- 2. Fatou'sche Lemma
- 3. Satz der dominierte Konvergenz

Satz 1. (Monotone Konvergenz)

- Sei $(\Omega, \mathcal{F}, \mu)$ ein Massraum, $f \ge 0$ messbar.
- Sei $0 \le f_1 \le f_2 \le \cdots \le f$ s.d. $(f_n \text{ messbar})$

$$\lim_{n\to\infty} f_n(\omega) = f(\omega), \quad \forall \omega \in \Omega \quad (punktweises \ Limes)$$

Dann

$$\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu = \sup_{n \to \infty} \int_{\Omega} f_n d\mu.$$

1 Integration (Fortsetzung)

Bemerkung. Falls $(f_n)_n$ ist eine Folge messbare Funktionen dann

$$\sup_{n \ge 1} f_n, \quad \inf_{n \ge 1} f_n$$

messbar sind. Übung. Sie mussen zeigen dass

$$\left\{\omega \in \Omega : \sup_{n \ge 1} f_n(\omega) < x\right\} \in \mathscr{F}$$

für alle $x \in \mathbb{R}$.

Eine Folgerung ist dass liminf f_n , limsup f_n und auch lim f_n messbar sind.

Lemma 2. (Fatou'sche Lemma) Sei $f_n \ge 0$ eine Folge messbare Funktionen. Dann

$$\int_{\Omega} \liminf_{n \to \infty} f_n \mathrm{d}\mu \leqslant \liminf_{n \to \infty} \int_{\Omega} f_n \mathrm{d}\mu.$$

Beweis. $\liminf_{n\to\infty} f_n \equiv \lim_{k\to\infty} (\inf_{n\geqslant k} f_n)$ (wachsend in k). $g_k \coloneqq (\inf_{n\geqslant k} f_n)$ (g_k) $_k$ mit $g_{k+1} \geqslant g_k \geqslant 0$. Wegen Lemma 1:

$$\int_{\Omega} \liminf_{n \to \infty} f_n d\mu = \int_{\Omega} \lim_{k \to \infty} g_k d\mu = \lim_{k \to \infty} \int_{\Omega} g_k d\mu$$

Aber wir haben dass $g_k \leqslant f_m$ für all $m \geqslant k$ dann $\int_{\Omega} g_k \mathrm{d}\mu \leqslant \int_{\Omega} f_m \mathrm{d}\mu$ für alle $m \geqslant k$ und

$$\int_{\Omega} g_k d\mu \leqslant \inf_{m \geqslant k} \int_{\Omega} f_m d\mu.$$

Deshalbs

$$\int_{\Omega} \liminf_{n \to \infty} f_n d\mu = \lim_{k \to \infty} \int_{\Omega} g_k d\mu \leq \lim_{k \to \infty} \left(\inf_{m \geqslant k} \int_{\Omega} f_m d\mu \right) = \liminf_{n \to \infty} \int_{\Omega} f_n d\mu.$$

Was war zu zeigen.

Gegenbiespiel. Fatou'sche Lemma ist optimal. $\Omega = \mathbb{R}$, $\mathscr{F} = \mathscr{B}(\mathbb{R})$, $d\mu = dx$ (Lebesgue Maß)

• "Mass nach $+\infty$ ".

$$f_n(x) = \mathbb{1}_{[n,n+1]}(x)$$
 $\lim_{n \to \infty} f_n(x) = 0,$

$$\int_{\mathbb{R}} f_n(x) dx = 1 \quad \text{aber} \qquad \int_{\mathbb{R}} \underbrace{\lim_{n \to \infty} f_n(x) dx}_{=0, \forall x \in \mathbb{R}} = 0.$$

"Mass nach 0".

$$f_n(x) = \frac{n}{2}e^{-n|x|}$$

$$f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{falls } x \neq 0 \\ +\infty & \text{falls } x = 0 \end{cases} : \mathbb{R} \to \mathbb{R}_{\geq 0} \cup \{+\infty\} =: \bar{\mathbb{R}}_+.$$

Dann $f_n \to 0$ <u>fast überall</u>, weil $\mu(\{0\}) = 0$. Das Maß μ "sieht" die Menge $\{0\}$ nicht!

$$\int_{\mathbb{R}} f_n(x) dx = 1, \qquad \int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} \mathbb{1}_{\{0\}^c}(x) f(x) dx = 0,$$

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) dx = 1 \quad \text{aber} \qquad \int_{\mathbb{R}} \lim_{n \to \infty} f_n(x) dx = 0.$$

Bemerkung. Sei $A \in \mathcal{F}$ s.d. $\mu(A^c) = 0$ und $f \in L^1(\Omega, \mathcal{F}, \mu)$. Dann, falls $f \ge 0$:

$$\int_{A^c} f \, \mathrm{d} \mu \coloneqq \int_{\Omega} \mathbb{1}_{A^c} f \, \mathrm{d} \mu = \sup_{\substack{g \leq \mathbb{1}_{A^c} f \\ g \in \mathcal{E}_+}} \int_{\Omega} g \, \mathrm{d} \mu = \sup_{\substack{g \leq f \text{ auf } A^c \\ g \in \mathcal{E}_+}} \int_{A^c} g \, \mathrm{d} \mu = 0,$$

weil, für $g \in \mathcal{E}_+$,

$$0 \leqslant \int_{A^c} g \mathrm{d}\mu \leqslant (\max g) \, \mu(A^c) = 0.$$

Das Gegenbeispiel hieroben zeigt, dass der Austausch von Grenzewert und Integral nicht immer möglich ist und man vorsichtig sein muss!

Für den letzen Satz, brauchen wir eine Definition.

Definition 3. Eine messbare Folge $(f_n)_{n\geqslant 1}$ Kovergiert $\underline{\mu\text{-fast "überall}}$ gegen eine messbare Funktion f, falls

$$\mu\left(\left(\lim_{n\to\infty}f_n=f\right)^c\right)=0.$$

Falls μ ein W-maß ist, dann ist das äquivalent zu

$$\mu\left(\lim_{n\to\infty}f_n=f\right)=1$$

und wir sagen auch, dass die Folge konvergiert μ -fast sicher.

Bemerkung. Versuchen Sie als Übung zu zeigen, dass die Ereignis

$$\left\{ \lim_{n \to \infty} f_n = f \right\} = \left\{ \omega \in \Omega : \lim_{n \to \infty} f_n(\omega) = f(\omega) \right\}$$

messbar ist (d.h. gehört zu \mathscr{F}), falls $(f_n)_n$ und f alle messbare Funkionen sind. (Hinweis: zuerst zeigen Sie, dass $\limsup_{n\to\infty} f_n$ und $\liminf_{n\to\infty} f_n$ messbar sind und dann, dass

$$\{f = h = g\} = \{\omega \in \Omega : f(\omega) = h(\omega) = g(\omega)\}\$$

messbar ist, falls f, h, g messbare Funktionen sind.

Satz 4. (Lebesgue's Dominierte Kovergenz Satz)

- Sei $(f_n)_{n\geq 1}$, $f_n\in L^1(\Omega, \mathcal{F}, \mu), \forall n\geq 1$;
- f messbar s.d. $\lim_{n\to\infty} f_n = f$ μ -fast überall;

• Nehmen wir an, $\exists g \ge 0$, $g \in L^1(\Omega, \mathcal{F}, \mu)$ s.d. für alle $n \ge 1$,

$$|f_n(\omega)| \leq g(\omega)$$
, μ -fast überall.

Dann, $f \in L^1(\Omega, \mathcal{F}, \mu)$ und

$$\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu.$$

Beweis. (a) Zuerst nehmen wir an, dass alle Bedingungen überall (nich nur μ -fast überall) gelten. Dann auf die ganze Ω ,

$$|f| = \lim_{n \to \infty} |f_n| \le g \Rightarrow \int_{\Omega} |f| d\mu \le \int_{\Omega} g d\mu < \infty$$

d.h. $f \in L^1(\Omega, \mathcal{F}, \mu)$. Dazu,

$$|f_n - f| \le |f_n| + |f| \le 2g$$

und $|f_n - f| \to 0$ als $n \to \infty$ punktwise. Fatou'sche Lemma dann gilt

$$2\int_{\Omega} g d\mu = \int_{\Omega} \underbrace{\lim_{n \to \infty} (2g - |f_n - f|)}_{=2g} d\mu = \int_{\Omega} \liminf_{n \to \infty} (2g - |f_n - f|) d\mu$$

$$\underset{\text{Fatou}}{\leqslant} \liminf_{n \to \infty} \int_{\Omega} (2g - |f_n - f|) d\mu = \liminf_{n \to \infty} \left(\int_{\Omega} (2g) d\mu - \int_{\Omega} |f_n - f| d\mu \right)$$

$$= \int_{\Omega} (2g) d\mu - \limsup_{n \to \infty} \int_{\Omega} |f_n - f| d\mu$$

Dann

$$0 \leqslant \limsup_{n \to \infty} \int_{\Omega} |f_n - f| \mathrm{d}\mu \leqslant 0 \Rightarrow \limsup_{n \to \infty} \int_{\Omega} |f_n - f| \mathrm{d}\mu = 0.$$

Wegen Linearität,

$$\left| \int_{\Omega} f d\mu - \int_{\Omega} f_n d\mu \right|_{\text{Lin}} \left| \int_{\Omega} (f - f_n) d\mu \right| \leq \int_{\Omega} |f - f_n| d\mu \to 0,$$

weil

$$-|f-f_n| \leq (f-f_n) \leq |f-f_n| \Rightarrow -\int_{\Omega} |f-f_n| d\mu \leq \int_{\Omega} (f-f_n) d\mu \leq \int_{\Omega} |f-f_n| d\mu.$$

Wir schließen daraus

$$\lim_{n\to\infty} \left| \int_{\Omega} f \, \mathrm{d}\mu - \int_{\Omega} f_n \, \mathrm{d}\mu \right| = 0 \Rightarrow \int_{\Omega} f \, \mathrm{d}\mu = \lim_{n\to\infty} \int_{\Omega} f_n \, \mathrm{d}\mu.$$

(b) Sei

$$A = \Big\{ \omega \in \Omega \mid \left(\lim_{n \to \infty} f_n(\omega) = f(\omega) \right) \land (\forall n, |f_n(\omega)| \leq g(\omega)) \Big\}.$$

A is messbar (Übung!). Die Annhamen bedeuten $\mu(A^c) = 0$. Sei $\tilde{f}_n := f_n \mathbb{1}_A$, $\tilde{f} := f \mathbb{1}_A$. Der Satz gilt für \tilde{f}_n , \tilde{f} wegen Teil (a), weil die Bedingung sind überall erfüllt. Dann

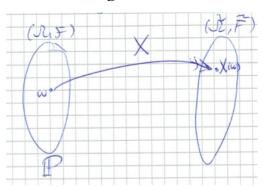
$$\lim_{n\to\infty}\int \tilde{f}_n \mathrm{d}\mu = \int \tilde{f} \mathrm{d}\mu.$$

Da

$$\int \tilde{f}_n d\mu - \int f_n d\mu = -\int_{\Omega} f_n \mathbb{1}_{A^c} d\mu = 0 \quad \text{und} \quad \int \tilde{f} d\mu - \int f d\mu = \int_{\Omega} f \mathbb{1}_{A^c} d\mu = 0,$$

weil $\mu(A^c) = 0$. Was war zu zeigen.

1.1 Abbildung von Maßen



 $X: (\Omega, \mathcal{F}) \to (\tilde{\Omega}, \tilde{\mathcal{F}})$ eine messbare Abbildung (eine Zufallsvariable wenn $\tilde{\Omega} = \mathbb{R}$)

Definition 5. Sei μ ein Ma β auf (Ω, \mathcal{F}) . Dann

$$\mu_X(A) \coloneqq \mu(X^{-1}(A)) = \mu(\{\omega \in \Omega \mid X(\omega) \in A\})$$

ist woldefiniert für alle $A \in \tilde{\mathcal{F}}$ und μ_X ist ein Ma β auf $(\tilde{\Omega}, \tilde{\mathcal{F}})$ (z.Z.), das wir nennen Bildma β durch X von μ .

Falls $(\tilde{\Omega}, \tilde{\mathcal{F}}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ und $\mu = \mathbb{P}$ (W-Ma β), dann \mathbb{P}_X heißt die <u>Verteilung</u> der Zufallsvariable X

Wir bezeichen auch $\mu_X = \mu \circ X^{-1}$ (Verkettung von Abbildungen). Zu ziegen dass $\mu_X = \mu \circ X^{-1}$ ein Maß sein. Sehe Aufgabe 4 in Blatt 3.

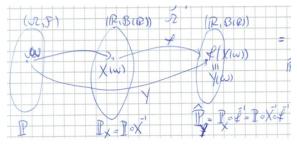
Wir haben $(\Omega, \mathcal{F}, \mathbb{P})$ ein abstractes W-Raum. $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P}_X)$ ein konkretes W-Raum (hier wird gerechnet, z.B. mit Lebesgue Integral und Infinitesimalrechnung) mit der Eigenschaft

$$\int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \int_{\mathbb{R}} x d\mathbb{P}_X(x).$$

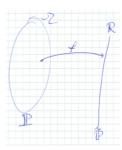
Ziegen Sie dass, es gilt auch (mit $Y(\omega) = f(X(\omega)), Y = f \circ X: \Omega \to \mathbb{R}$)

$$\int_{\Omega} f(X(\omega)) d\mathbb{P}(\omega) = \int_{\mathbb{R}} f(x) d\mathbb{P}_X(x) = \int_{\mathbb{R}} y d\mathbb{P}_Y(y)$$

für alle (Borel-)messbare $f: \mathbb{R} \to \mathbb{R}$ (Siehe Aufgabe 4 in Blatt 3).



Bemerkung: $f^{-1}: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ ist die Inverse von f im Sinne von Mengen (auch Urbild). Statt mit Ω ist es leichter mit Maße auf $\mathrm{Bild}(\Omega) \subseteq \mathbb{R}$ zu arbeiten: $\mathbb{P}_f = \mathbb{P} \circ f^{-1}$.



$$\int_{\Omega} g(f(\omega)) d\mathbb{P}(\omega) = \int_{\mathbb{R}} g(x) d\mathbb{P}_f(x).$$

(Erinnerung von Vorlesung 4)

Definition 6. Die Verteilungsfunktion $F: \mathbb{R} \to [0,1]$ von f (oder von \mathbb{P}_f) ist definiert durch

$$F(x)\coloneqq \mathbb{P}\left(\{\omega\in\Omega\,|\,f(\omega)\leqslant x\}\right)=\mathbb{P}\left(f^{-1}((-\infty,x])\right)=\mathbb{P}_f((-\infty,x]).$$

Bemerkung.

- F ist von $\mathbb P$ und f abhängig aber auch durch $\mathbb P_f$ eindeutig gegeben.
- F ist <u>wachsend</u>, <u>rechtsstetig</u> und definiert \mathbb{P}_f