Vorlesung 9 | 22.11.2020 | 10:15-12:00 via Zoom

Ein Handzettel für heutige Vorlesung finden Sie auf der Seite der Vorlesung auf meiner Website, siehe Tagebuch.

In der letzten Vorlesungen haben wir gesehen: Bedingte W-keit \mathbb{P}_B und überschrankung von σ -Algebren \mathscr{F}_B , Bayes'sche Formel, $\sigma(X)$: von Z.V. erzeugten σ -Algebren, Unabhängigkeit von Ereignisse, von σ -Algebren, von Z.V., Produkt σ -Algebra $\mathscr{F} \otimes \mathscr{G}$.

3 Bedingte W-keiten, Unabhängigkeit und Produktmaße (fortsetzung)

(Kapitel 3 in Bovier Skript)

3.1 Produkträume

Wir wollen schauen wie man unabhängige Z.V. konstruiren kann.

Seien $(\Omega_1, \mathscr{F}_1, \mathbb{P}_1)$ und $(\Omega_2, \mathscr{F}_2, \mathbb{P}_2)$ zwei W-raume, und $X_1: \Omega_1 \to \mathbb{R}, X_2: \Omega_2 \to \mathbb{R}$ messbare Funktionen. (d.h. Z.V.)

<u>Ziel:</u> Konstruiere $(\Omega, \mathcal{F}, \mathbb{P})$ und $\hat{X}_1: \Omega \to \mathbb{R}$ und $\hat{X}_2: \Omega \to \mathbb{R}$ Z.V. auf (Ω, \mathcal{F}) , s.d. diese Z.V. unabhängig sind bzg. \mathbb{P} und s.d. \hat{X}_i und X_i gleich verteilt sind für i = 1, 2. Anders gesagt

$$\mathbb{P}(\hat{X}_1 \in A, \hat{X}_2 \in B) = \mathbb{P}_1(X_1 \in A) \mathbb{P}_2(X_2 \in B), \qquad A, B \in \mathcal{B}(\mathbb{R}).$$

Definition 1.

•

$$\Omega = \Omega_1 \times \Omega_2 = \{\omega = (\omega_1, \omega_2) | \omega_1 \in \Omega_1, \omega_2 \in \Omega_2\}$$

heißt das <u>Produktraum</u> von Ω_1 und Ω_2 .

• $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$ ist die kleinste σ -Algebra, die alle Menge der Form (Rechtecke)

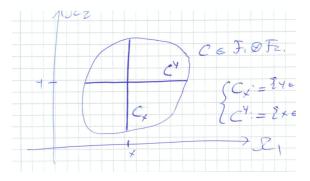
$$C = A \times B = \{\omega = (\omega_1, \omega_2) | \omega_1 \in A, \omega_2 \in B\} \subseteq \Omega$$

 $A \in \mathcal{F}_1$, $B \in \mathcal{F}_2$ enthält, d.h.

$$\mathscr{F}_1 \otimes \mathscr{F}_2 = \sigma(\mathscr{F}_1 \times \mathscr{F}_2), \qquad \mathscr{F}_1 \times \mathscr{F}_2 = \{A \times B : A \in \mathscr{F}_1, B \in \mathscr{F}_2\} \subseteq \mathscr{P}(\Omega_1 \times \Omega_2)$$

 $\mathcal{F}_1 \otimes \mathcal{F}_2$ heißt die Produkt σ -Algebra von \mathcal{F}_1 und \mathcal{F}_2 .

Bemerkung. $\mathcal{F}_1 \times \mathcal{F}_2 = \{C = A \times B\}$ ist durchschnittstabil.



Falls $C \in \mathcal{F}_1 \otimes \mathcal{F}_2$ und $f: \Omega \to \mathbb{R}$ dann $C_x \subseteq \Omega_2$, $C^y \subseteq \Omega_1$, $f_x: \Omega_2 \to \mathbb{R}$, $f^y: \Omega_1 \to \mathbb{R}$,

$$C_x \coloneqq \{ y \in \Omega_2 | (x, y) \in C \}, \qquad x \in \Omega_1,$$

$$C^y \coloneqq \{ x \in \Omega_1 | (x, y) \in C \}, \qquad y \in \Omega_2.$$

$$f_x(y) \coloneqq f(x, y), \qquad x \in \Omega_1$$

$$f^y(x) \coloneqq f(x, y), \qquad y \in \Omega_2$$

Lemma 2. Es gilt

- a) $\forall C \in \mathcal{F}_1 \otimes \mathcal{F}_2, x \in \Omega_1, y \in \Omega_2 \ dann, C_x \in \mathcal{F}_2, C^y \in \mathcal{F}_1$
- b) $\forall f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ messbar dann, $\forall x \in \Omega_1, y \in \Omega_2$ $f_x: (\Omega_2, \mathcal{F}_2) \to \mathbb{R}$, $f^y: (\Omega_1, \mathcal{F}_1) \to \mathbb{R}$ messbar sind.

Satz 3. Seien \mathbb{P}_1 , \mathbb{P}_2 W-maße auf $(\Omega_1, \mathcal{F}_1)$ und $(\Omega_2, \mathcal{F}_2)$

a) $\exists ! \ \mathbb{P} = \mathbb{P}_1 \otimes \mathbb{P}_2 \ W\text{-ma\beta} \ (Produktma\beta) \ auf \ (\Omega, \mathcal{F}_1 \otimes \mathcal{F}_2) \ s.d.$

$$(\mathbb{P}_1 \otimes \mathbb{P}_2)(A \times B) = \mathbb{P}_1(A)\mathbb{P}_2(B) \qquad \forall A \in \mathcal{F}_1, B \in \mathcal{F}_2.$$

b) Falls $C \in \mathcal{F}_1 \otimes \mathcal{F}_2$, dann

$$\mathbb{P}_1 \otimes \mathbb{P}_2(C) = \int_{\Omega_1} \mathbb{P}_2(C_x) d\mathbb{P}_1(x) = \int_{\Omega_2} \mathbb{P}_1(C^y) d\mathbb{P}_2(y).$$

Beweis. Wegen Satz 8 aus Skript 4, die Eindeutigkeit (aus $\mathscr{F}_1 \otimes \mathscr{F}_2$) folgt weil $\mathscr{F}_1 \times \mathscr{F}_2$ is \cap -stabil und $\mathscr{F}_1 \times \mathscr{F}_2$ erzeugt $\mathscr{F}_1 \otimes \mathscr{F}_2$. Existenz von $\mathbb P$ mit Eigenshaft (a)? Für $C \in \mathscr{F}_1 \otimes \mathscr{F}_2$ definiere

$$\mathbb{P}(C) \coloneqq \int_{\Omega_1} \mathbb{P}_2(C_x) \mathbb{P}_1(\mathrm{d}x).$$

Ist es wolhdefiniert? $x \in \Omega_1 \mapsto \mathbb{P}_2(C_x)$ ist wohldefiniert weil $C_x \in \mathcal{F}_2$ (Lemma 2, (a)). Ist es \mathcal{F}_1 -messbar? Sei

$$\mathscr{C} = \{C \in \mathscr{F}_1 \otimes \mathscr{F}_2 | \text{Die Abbildung } x \mapsto \mathbb{P}_2(C_x) \text{ ist } \mathscr{F}_1\text{-messbar}\} \subseteq \mathscr{F}_1 \otimes \mathscr{F}_2.$$

Z.z. $\mathscr{C} = \mathscr{F}_1 \otimes \mathscr{F}_2$. Für $C = A \times B$,

$$\mathbb{P}_2(C_x) = \mathbb{I}_A(x) \, \mathbb{P}_2(B)$$

dann \mathcal{F}_1 -messbar. Es folgt dass $C \in \mathcal{C}$ und

$$\mathcal{F}_1 \times \mathcal{F}_2 \subseteq \mathcal{C} \subseteq \sigma(\mathcal{C}) \subseteq \mathcal{F}_1 \otimes \mathcal{F}_2$$
.

 \mathscr{C} ist Dynkin? (i) $\Omega = \Omega_1 \times \Omega_2 \in \mathscr{C}$; (ii) $(C^c)_x = (C_x)^c \Rightarrow \mathbb{P}_2((C_x)^c) = 1 - \mathbb{P}_2(C_x) \Rightarrow C^c \in \mathscr{C}$ falls $C \in \mathscr{C}$. (iii) Fur $(C_k)_k \subseteq \mathscr{C}$ disjuntkte $(\cup_k C_k)_x = \cup_k (C_k)_x$ auch diskunkte, σ -Additivität \Rightarrow

$$x \mapsto \mathbb{P}_2[(\cup_k C_k)_x] = \sum_k \mathbb{P}_2((C_k)_x)$$
 und das ist messbar $\Rightarrow \cup_k C_k \in \mathscr{C}$.

Dann \mathscr{C} eine Dynkin-systeme ist und $\mathscr{D}(\mathscr{C}) = \mathscr{C}$. Aus Satz 5, Skript 4 (oder Lemma 3, Skript 3) \Rightarrow

$$\mathscr{F}_1 \otimes \mathscr{F}_2 \supseteq \mathscr{C} \supseteq \mathscr{D}(\mathscr{F}_1 \times \mathscr{F}_2) = \sigma(\mathscr{F}_1 \times \mathscr{F}_2) = \mathscr{F}_1 \otimes \mathscr{F}_2.$$

(Alle durchschnittstabile Dynkin-systeme sind σ -Algebren). Dann $x \mapsto \mathbb{P}_2(C_x)$ ist \mathscr{F}_1 -messbar für alle $x \in \Omega_1$ und dann $\mathbb{P}(C)$ wohldefiniert ist.

Letzlich, für $C = A \times B$,

$$\mathbb{P}(A \times B) = \int_{\Omega_1} \mathbb{P}_2((A \times B)_x) \mathbb{P}_1(\mathrm{d}x) = \mathbb{P}_2(B) \int_{\Omega_1} \mathbb{I}_A(x) \mathbb{P}_1(\mathrm{d}x) = \mathbb{P}_2(B) \mathbb{P}_1(A),$$

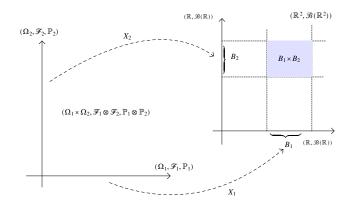
dann \mathbb{P} erfüllt (a). σ -Additivität?

$$\mathbb{P}(\cup_k C_k) = \int_{\Omega_1} \mathbb{P}_2((\cup_k C_k)_x) \mathbb{P}_1(\mathrm{d}x) \underset{\sigma\text{-Add für } \mathbb{P}_2}{=} \int_{\Omega_1} \left[\sum_k \mathbb{P}_2((C_k)_x) \right] \mathbb{P}_1(\mathrm{d}x)$$

$$= \frac{1}{\text{Mon.Konv.}} \sum_k \int_{\Omega_1} \mathbb{P}_2((C_k)_x) \mathbb{P}_1(\mathrm{d}x) = \sum_k \mathbb{P}(C_k).$$

Es gilt. Normierung? $\mathbb{P}(\Omega_1 \times \Omega_2) = \mathbb{P}_1(\Omega_1) \mathbb{P}_2(\Omega_2) = 1$. (Dann Complement gilt auch).

Bemerkung. Falls X_k Z.V. auf $(\Omega_k, \mathscr{F}_k, \mathbb{P}_k)$ für k = 1, 2, dann sind X_1 und X_2 unabhängige Z.V. auf $(\Omega_1 \times \Omega_2, \mathscr{F}_1 \otimes \mathscr{F}_2, \mathbb{P}_1 \otimes \mathbb{P}_2)$



Es gilt $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ (übung). Wegen die Konstruktion oben:

$$\mathbb{P}(X_1 \in B_1, X_2 \in B_2) = \mathbb{P}_1(X_1 \in B_1) \mathbb{P}_2(X_2 \in B_2)$$

aber

$$\mathbb{P}(X_1 \in B_1) = \mathbb{P}(X_1 \in B_1, X_2 \in \Omega_2) = \mathbb{P}_1(X_1 \in B_1) \mathbb{P}_2(X_2 \in \Omega_2) = \mathbb{P}_1(X_1 \in B_1)$$

Und dann

$$\mathbb{P}(X_1 \in B_1, X_2 \in B_2) = \mathbb{P}(X_1 \in B_1) \mathbb{P}(X_2 \in B_2).$$

 X_1, X_2 unbahängig blg. \mathbb{P} sind.

Beispiel.

1. Werfen wir *n* unabhängige Münzen. $\Omega_k = \{0, 1\}, k = 1, \dots, n, \text{ mit } \mathcal{F}_k = \mathcal{P}(\Omega_k),$

$$\Omega = \Omega_1 \times \cdots \times \Omega_n = \{0, 1\}^n.$$

Sei $\mathbb{P}_k(\omega_k = 1) = 1 - \mathbb{P}_k(\omega_k = 0) = p$. Seien X_1, \dots, X_n definiert via

$$X_k(\omega_1,\ldots,\omega_n)=\omega_k, \qquad \Rightarrow X_k \widetilde{\mathbb{p}} \operatorname{Ber}(p).$$

Dann sind auf $(\Omega, \mathscr{F} = \mathscr{F}_1^{\otimes n} = \mathscr{P}(\Omega), \operatorname{Ber}(p)^{\otimes n})$ unabhängige identische verteilte Z.V. (i.i.d. Z.V.)(auf English: independent and identically distributed)

2. Seien X_1 und X_2 zwei Z.V. unabhängige mit abs. stetige Verteilungen mit Dichten ρ_1 und ρ_2 (bzg. Lebesgue). Dann

$$\mathbb{P}(X_1 \leq s_1, X_2 \leq s_2) = \mathbb{P}(X_1 \leq s_1) \mathbb{P}(X_2 \leq s_2) = \int_{-\infty}^{s_1} \rho_1(x_1) dx_1 \int_{-\infty}^{s_2} \rho_2(x_2) dx_2.$$

Allgemein, falls für alle $A \in \mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ wir haben

$$\mathbb{P}((X_1, X_2) \in A) = \int_A \rho(x_1, x_2) dx_1 dx_2,$$

dann spricht man von <u>Dichtefunktion der Verteilung von $X = (X_1, X_2)$ </u>. $X: \Omega \to \mathbb{R}^2$ ein Zufallsvektor. Für unab. Z.V. X_1, X_2 wir haben

$$\rho(x_1, x_2) = \rho_1(x_1) \, \rho_2(x_2).$$

Hier wir benutzen dass

$$\int_{-\infty}^{s_1} \rho_1(x_1) dx_1 \int_{-\infty}^{s_2} \rho_2(x_2) dx_2 = \int_{x_1 \leq s_1, x_2 \leq s_2} \rho(x_1, x_2) dx_1 dx_2.$$

Wir werden unten sehen, warum dies wahr ist (Satz von Fubini)...

Quiz/Biespiel. Alice schreibt zwei reelle Zahlen $X_0 \neq X_1$. Dann wirft eine faire Münze M (d.h. eine Bernoulli Z.V.) und

$$\begin{cases} \text{ falls } M = 1, \text{ zeigt } X_1, \\ \text{ falls } M = 0, \text{ zeigt } X_0. \end{cases}$$

Sei Y die gezeigte Zahl und X die verstekte Zahl.

Die Aufgabe von Bob ist zu erraten ob X > Y oder ob X < Y. Alice bietet Bob eine Wette mit Quote 1:2 an. Soll Bob die Wette annehmen?

Antwort: Ja! Bob hat eine Strategie, um die richtige Antwort mit einer Wahrscheinlichkeit von mehr als 1/2 zu erraten!

Die Strategie ist wie folgt: Bob wirft eine Z.V. Z mit Verteilung $\mathcal{N}(0, 100)$ und dann falls Z > Y er wettet für X > Y oder sonst er wettet für Y > X.

Wie formalisieren wir das? Ein erster W-räum $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ für der Spiel, mit Z.V.

$$(M: \Omega_1 \to \{0,1\}) \sim \text{Ber}(1/2)$$

so dass M=0 wenn $Y=X_1, X=X_0$ und M=1 wenn $Y=X_0, X=X_1$. Ein zweiter W-räum $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ für Bob. Sei

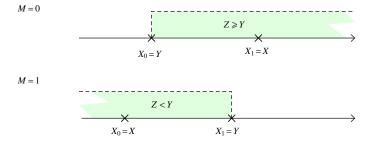
$$Z: \Omega_2 \to \mathbb{R} \sim \mathcal{N}(0, 100),$$

und definiere die ganze W-räum als Produktraum:

$$(\Omega, \mathcal{F}, \mathbb{P}) = (\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, \mathbb{P}_1 \otimes \mathbb{P}_2).$$

Falls

$$\begin{cases} Z < Y \implies \text{Bob rät } X < Y \\ Z \geqslant Y \implies \text{Bob rät } X > Y \end{cases}$$



Sei $A := \mathbb{1}_{Z < Y}$. Für M = 0, A = 0, Bob rät X > Y, Richtig. Für M = 1, A = 1, Bob rät X < Y, Richtig. Dann

$$\mathbb{P}(\text{Bob r\"{a}t richtig}) = \mathbb{P}(M=A) = \mathbb{P}(Z < Y, M=1) + \mathbb{P}(Z > Y, M=0)$$
$$= \mathbb{P}(Z < X_1, M=1) + \mathbb{P}(Z > X_0, M=0)$$

$$= \frac{1}{2} + \frac{1}{2} \underbrace{\mathbb{P}_2(X_0 \leq Z < X_1)}_{\leq 0} > \frac{1}{2}. \quad (!!!)$$

3.2 Der Satz von Fubini

Frage. Sei

$$X: (\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, \mathbb{P}_1 \otimes \mathbb{P}_2) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$

Gilt es immer:

$$\begin{split} \int_{\Omega_1 \times \Omega_2} X(\omega_1, \omega_2) \mathrm{d}(\mathbb{P}_1 \otimes \mathbb{P}_2) &= \int_{\Omega_1} \left(\int_{\Omega_2} X(\omega_1, \omega_2) \mathrm{d}\mathbb{P}_2(\omega_2) \right) \mathrm{d}\mathbb{P}_1(\omega_1) ??? \\ &= \int_{\Omega_2} \left(\int_{\Omega_1} X(\omega_1, \omega_2) \mathrm{d}\mathbb{P}_1(\omega_1) \right) \mathrm{d}\mathbb{P}_2(\omega_2) \qquad ???? \end{split}$$

Falls nein, unter welche Bedingungen gilt es?

Satz 4. (Fubini–Tonelli) Seien $(\Omega_k, \mathscr{F}_k, \mathbb{P}_k)_{k=1,2}$ zwei W-räume, $f \geqslant 0$ eine reelle messbare Funkion auf $(\Omega_1 \times \Omega_2, \mathscr{F}_1 \otimes \mathscr{F}_2)$. Dann ist

$$h : x \in \Omega_1 \mapsto h(x) \coloneqq \int_{\Omega_2} f(x, y) d\mathbb{P}_2(y), \qquad \mathcal{F}_2\text{-messbar}.$$

$$g: y \in \Omega_2 \mapsto g(y) := \int_{\Omega_1} f(x, y) d\mathbb{P}_1(x), \quad \mathscr{F}_{1}\text{-messbar}.$$

Dazu,

$$\int_{\Omega_1 \times \Omega_2} f \mathbf{d}(\mathbb{P}_1 \otimes \mathbb{P}_2) = \int_{\Omega_1} h \mathbf{d}\mathbb{P}_1 = \int_{\Omega_2} g \mathbf{d}\mathbb{P}_2. \tag{1}$$

Beweis.

① Indikatorfunktion: Für $C \in \mathcal{F}_1 \otimes \mathcal{F}_2$ sei $f = \mathbb{1}_C$, wegen Definition von Produktmaß wir haben,

$$h(x) = \mathbb{P}_2(C_x), \qquad g(y) = \mathbb{P}_1(C^y),$$

sind \mathcal{F}_1 und \mathcal{F}_2 messbar und (1) gilt.

- ② Wegen linearität des Integrals es gilt für alle einfachen Funtionen.
- ③ Jede positive messbare Funktion ist ein monotone Limes einfacher Funktionen, dann wegen die Monotone konvergenz Satz, (1) gilt im Allgemeinen.

Für allgemeine Funktionen müssen wir integrierbarkeit fordern.

Satz 5. (Fubini–Lebesgue) Sei $f: (\Omega_1 \times \Omega_2, \mathscr{F}_1 \otimes \mathscr{F}_2) \to (\mathbb{R}, \mathscr{B}(\mathbb{R}))$ <u>absolut integrierbar</u> bzgl. $\mathbb{P}_1 \otimes \mathbb{P}_2$.

a)
$$y \mapsto f(x, y)$$
 ist $L^1(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ für \mathbb{P}_1 -fast alle $x \in \Omega_1$, (und umgekehrt)

b) $h(x) \coloneqq \int_{\Omega_2} f(x,y) d\mathbb{P}_2(y)$ wohldefiniert bis auf \mathbb{P}_2 -Nullmengen und $h \in L^1(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$, $g(y) \coloneqq \int_{\Omega_1} f(x,y) d\mathbb{P}_1(x)$ wohldefiniert bis auf \mathbb{P}_1 -Nullmengen und $g \in L^1(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$,

c)

$$\int_{\Omega_1 \times \Omega_2} f \mathbf{d}(\mathbb{P}_1 \otimes \mathbb{P}_2) = \int_{\Omega_1} h \mathbf{d} \mathbb{P}_1 = \int_{\Omega_2} g \mathbf{d} \mathbb{P}_2.$$

Beweis. (a) Thm 4 (Fubini) mit $|f| \ge 0$ gilt

$$\int_{\Omega_1} \underbrace{\left(\int_{\Omega_2} |f(x,y)| \mathbb{P}_2(\mathrm{d}y)\right)}_{<\infty \text{ bis auf } \mathbb{P}_1\text{-Nullmenge}} \mathrm{d}\mathbb{P}_1(\mathrm{d}x) = \int_{\Omega_1 \times \Omega_2} |f| \mathrm{d}(\mathbb{P}_1 \otimes \mathbb{P}_2) < \infty.$$
Annahme

(b) Sei $f = f_+ - f_-$ mit $f_{\pm} \ge 0$. Es folgt via Linearität auch aus Thm 4. [Für die x (bzw. y) wo h(x) (bzw. g(y)) nicht definiert ist, kann man ein beliebiges Wert setzen] Dann

$$\int_{\Omega_1} |h(x)| \mathbb{P}_1(\mathrm{d}x) \le \int_{\Omega_1} \left(\int_{\Omega_2} |f(x,y)| \mathbb{P}_2(\mathrm{d}x) \right) \mathbb{P}_1(\mathrm{d}x) < \infty$$

und h ist integrierbar bzgl. \mathbb{P}_1 . Hier wir benutzen dass

$$h(x) = \underbrace{\int_{\Omega_2} f_+(x, y) d\mathbb{P}_2(y)}_{h_+(x)} - \underbrace{\int_{\Omega_2} f_-(x, y) d\mathbb{P}_2(y)}_{h_-(x)}$$

und dass

$$|h(x)| = \int_{\Omega_2} f_+(x, y) d\mathbb{P}_2(y) + \int_{\Omega_2} f_-(x, y) d\mathbb{P}_2(y).$$

(c) Zerlegung von $f = f_+ - f_- + Thm 4 + linearität$.