

V3F1 Elements of Stochastic Analysis – Problem Sheet 0

This sheet will be solved during the tutorials of the week of October 14th. It will not be evaluated.

Let $(\Omega, \mathscr{F}, \mathbb{P})$ a probability space. Recall that the conditional expectation $\mathbb{E}[X|\mathscr{G}]$ of an integrable random variable *X* wrt. the σ -algebra $\mathscr{G} \subseteq \mathscr{F}$ is any random variable *Z* which is integrable and \mathscr{G} -measurable and for which

$$\mathbb{E}[ZY] = \mathbb{E}[XY]$$

for all $Y \in L^1(\mathbb{P}, \mathcal{G})$. It is a.s. unique.

Exercise 1. For all $X, Y \in L^1(\mathcal{F})$ and all sub- σ -algebras $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ prove the following properties of the conditional expectation.

- 1. Linearity: $\mathbb{E}[\lambda X + \mu Y|\mathscr{G}] = \lambda \mathbb{E}[X|\mathscr{G}] + \mu \mathbb{E}[Y|\mathscr{G}]$ for all $\lambda, \mu \in \mathbb{R}$;
- 2. Positivity: $X \ge 0a.s. \Rightarrow \mathbb{E}[X|\mathcal{G}] \ge 0a.s.$;
- 3. Monotone convergence: $0 \leq X_n \nearrow X a.s. \Rightarrow \mathbb{E}[X_n | \mathscr{G}] \nearrow \mathbb{E}[X | \mathscr{G}] a.s.$;
- 4. Jensen's inequality: for all convex $\varphi \colon \mathbb{R} \to \mathbb{R} \colon \mathbb{E}[\varphi(X)|\mathcal{G}] \ge \varphi(\mathbb{E}[X|\mathcal{G}])$;
- 5. Contractivity in L^p : $||\mathbb{E}[X|\mathcal{G}]||_p \leq ||X||_p$ for all $p \in [1, \infty]$,
- 6. Telescoping: If \mathcal{H} is a sub- σ -algebra of \mathcal{G} then

 $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}];$

7. If $Z \in \mathcal{G}$, $\mathbb{E}[|X|] < \infty$ and $\mathbb{E}[|XZ|] < +\infty$ then $\mathbb{E}[XZ|\mathcal{G}] = Z \mathbb{E}[X|\mathcal{G}]$.

Exercise 2. Assume there exists a partition $A_1, ..., A_n$ of Ω (i.e. the sets are pairwise disjoint and cover all Ω) and let $\mathscr{G} = \sigma(A_1, ..., A_n)$. Let $X \in L^1(\mathbb{P}, \mathscr{F})$.

- a) Describe \mathcal{G} .
- b) Show that $\mathbb{E}[X|\mathcal{G}] = \sum_{i} \mathbb{E}[X|A_{i}] \mathbb{1}_{A_{i}}$ with $\mathbb{E}[X|A_{i}] \coloneqq \mathbb{E}[X\mathbb{1}_{A_{i}}] / \mathbb{E}[\mathbb{1}_{A_{i}}]$.

Exercise 3. Prove the following.

a) If X is independent of the σ -algebra \mathscr{G} , then $\mathbb{E}[X|\mathscr{G}]$ is almost surely constant and

$$\mathbb{E}[X|\mathcal{G}] = \mathbb{E}(X), \quad \text{a.s.}$$

b) If \mathscr{H} and \mathscr{G} are independent, *X* is \mathscr{G} -mesurable and $\mathscr{G}' \subseteq \mathscr{G}$, then

$$\mathbb{E}[X|\mathscr{H},\mathscr{G}'] = \mathbb{E}[X|\mathscr{G}'].$$

c) If $X_1, ..., X_n$ is a family of independent r.v. and $f(X_1, ..., X_n) \in L^1$ then

$$\mathbb{E}[f(X_1, \dots, X_n) | X_1] = \varphi(X_1)$$

where $\varphi(x) \coloneqq \mathbb{E}[f(x, X_2, \dots, X_n)].$