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Exercise 1. [Pts 3+3+3]

a) Show that there is a unique strong solution Xt of the 1-dimensional SDE

dXt =log(1+Xt
2)dt +1{Xt>0}Xt dBt, X0= x.

b) Let b be a function in C1(ℝ,ℝ) such that b(y)⩾𝛿>0. Solve the 1-dimensional SDE

dXt =
1
2b(Xt)b′(Xt)dt +b(Xt)dBt, X0 =x.

(Hint: define h(y)=∫0
y dz

b(z) and consider the process Y =h(X).)

c) Let b: [0, T] × ℝd → ℝd be a measurable function satisfying |b(t, x)| ⩽ C(t), where C ∈ L2([0, T]) and
𝜎: ℝd → ℝd×d a Lipshitz function such that for all x ∈ ℝd the matrix 𝜎(x) is invertible and its inverse
satisfies ‖𝜎−1(x)‖⩽𝜆 for some 𝜆<∞. Show uniqueness in law of weak solutions to the SDE

dXt =b(t,Xt)dt +𝜎(Xt)dBt, t ∈[0,T]

(Hint: use Girsanov's transformation similarly to the case 𝜎(x)=1d×d)

Exercise 2. [Pts 3+3+4] Consider the one dimensional SDE

dXt =−Xt
3dt +dBt, X0= x

where B is a standard Brownian motion.

a) Let f (t, x) = (1 + |x|2) and TL = inf {t ⩾ 0: |Xt| > L}. Use Ito formula to show that there exists a constant
𝜆 such that the process Zt ≔ e−𝜆(t∧TL)f (Xt∧TL) is a supermartingale.

b) Deduce that ℙ(TL ⩽ t)→0 as L →∞.

c) Conclude that solutions of the SDE cannot explode (that is 𝜁≔supL TL =∞ a.s.).

Exercise 3. [Pts 4] (Population growth in a stochastic, crowded environment) The nonlinear SDE

dXt = rXt (K −Xt)dt +𝛽Xt dBt, X0 =x>0, (1)

is often used as a model for the growth of a population of size Xt in a stochastic, crowded environment. The
constant K >0 is called the carrying capacity of the environment, the constant r ∈ℝ is a measure of the quality
of the environment and the constant 𝛽∈ℝ is a measure of the size of the noise in the system. Verify that

Xt =exp��rK − 1
2𝛽2�t +𝛽Bt��1

x + r�
0

t
exp��rK − 1

2𝛽2�s+𝛽Bs�ds�
−1

, t ⩾0,

is the unique (strong) solution to (1).
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