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We start this course by describing one of the experiments which led to some of the early dis-
coveries in quantum mechanics, that of the quantisation of the intrinsic magnetic moment of the
electron, the spin.

1 The Stern–Gerlach experiment

Otto Stern and Walther Gerlach conducted in Frankfurt in 1922 the experience described in
Figure 1 (left). A beam of atoms experience an intense magnetic field and as a consequence
is deflected. Upon detection by means of a screen the arrival positions of the atoms reveals a quan-
tized patterns, in contrast with classical theory of the magnetic moment of atoms which would
require a continuous distribution of arrival positions due to the uniform distributions of the mag-
netic moment within the atom's population escaping from the oven. Figure 1 (right) shows the
actual images obtained in the original experiment.
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Figure 1. Left: Stern–Gerlach experiment: silver atoms travel through an inhomogeneous magnetic field and are
deflected up or down depending on their spin. 1: furnace. 2: beam of silver atoms. 3: inhomogeneous magnetic field. 4:
expected result. 5: what was actually observed. [from Wikipedia https://en.wikipedia.org/wiki/Stern–Gerlach_exper-
iment]. Right: the experimental result of the Stern-Gerlach experiment. The beam has split into two components.
From [Gerlach, Walther, and Otto Stern. “Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld.”
Zeitschrift für Physik 9, no. 1 (December 1, 1922): 349–52. https://doi.org/10.1007/BF01326983.]

The Stern–Gerlach experiment shows the quantisation of the magnetic moment for the elec-
tron. Indeed the silver atoms have atomic number 47. In its fundamental state, 46 of these
electrons do not contributed to the magnetic moment since they come in pairs of opposite intrin-
stic magnetic moment (spin) and in a spatially symmetric state which do not generate any angular
momentum. Only the last electron, whose spatial distributions is also symmetric, has an uncom-
pensated intrinsic magnetic moment which consitute the only relevant contribution to the total
magnetic moment of the atom. This magnetic moment interacts with the non–uniform mag-
netic field deflecting the trajectory of the atom. The presence of two well separated tracks means
that this spin comes only in two varieties, oriented in the direction of the magnetic field or in
the opposite direction.

So the spin of the electron is a Bernoulli random variable. In order to explore other properties of
this random variable we imagine a sequence of Stern–Gerlach experiments performed in series.

Oven ẑẑ
+ +

−

In this first case we first measure the ẑ orientation, select those atoms which emerge from the +
path after the first instrument and then again the ẑ orientation and we obtain that all the atoms
emerge from the + path.

Oven x̂ẑ
+ +

−

In this second situation we measure a different, orthogonal direction in the second instrument and
we obtain that half of the atoms emerge from the + path and half from the − path. This is expected
due to the symmetry of the problem.

Oven x̂ẑ
ẑ+ + +

−
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In this third installment we select the atoms which emerge from the + path after the x̂ instrument
and perform another selection with a ẑ instrument. The result is that again half of the atoms
emerge from the + path and half from the − path. The interpretation is that the measurement of x̂
has completely destroyed the previous measurement of ẑ.
We now introduce another apparatus which undo the effect of a Stern–Gerlach instrument, this
is not difficult to imagine, we just need to produce the opposite magnetic field to undo the effect
of the first and arrange appropriately the geometry to recombine the atom beam. We label this
instrument ž if it operates in the z direction.

Oven x̂ x̌ ẑẑ
+ +

−

In this first case we use the new instrument to recombine the beams after a x̂ beam splitter. If we
have selected only atoms with spin in the ẑ = +1 direction right after the oven, then we will end
up with all the atoms in the + beam after the last ẑ instrument.

Oven x̂ x̌ ẑẑ
+ + +

−

We now block the x̂ = −1 beam and we observe that atoms exit the instrument with probability
1/2 in each of the two final beams.
This is quite surprising. Allowing more atoms to go through the experiment depletes one of the
exit beams! This property is not in agreement with a probabilistic description of the state of the
atoms. Removing a conditioning cannot renders impossible events which were possible under the
conditioning. This is a manifestation of quantum mechanical interference effects.

2 The mathematical model of a physical system
We describe now the basic mathematical model for a physical system from which we will later
deduce the basic structure of quantum mechanics.
For a more systematic discussion of various aspects of this modelling step refer to the following
literature:

• Strocchi, F. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short
Course for Mathematicians. 2 edition. New Jersey: World Scientific Publishing Company,
2008.

• Segal, E. E., and George Whitelaw Mackey. Mathematical Problems of Relativistic Physics.
Providence, RI: American Mathematical Society, 1963.

We have two basic players in this game: observables and states.

• Observables. An observable is a physical quantity which we can measure (e.g. components
of magnetic moment, position, speed/momentum, energy). Connected with some measuring
apparatus which has a scale where you read a real number. We write 𝒪 for the set of all
observables. Given an observable A ∈ 𝒪 more observables can be constructed from A by
elementary procedures (i.e. relabeling the scale of the apparatus) E.g. 𝜆A, An ∈ 𝒪 𝜆 ∈ ℝ.
AnAm = An+m. In general we could imagine to define in a similar way f (A) for any f :ℝ→ℝ.
An observable is positive if gives only positive results, in symbols we can reformulate this
property as A ⩾ 0 ⇔ ∃B ∈ 𝒪: A ≡ B2 (there with ≡ we just mean that operationally the two
observables A and B2 gives the same values).
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• States. We imagine that a certain physical object under study can be prepared in such a way
that it is meaningful to speak about repeated experiments on the same entity. This entity
is the state 𝜔 ∈ 𝒮 of the system under consideration. E.g. the state of the atoms in the
Stern–Gerlach experiment beam, the state of a particle in motion in a particle accellerator.
(And what about “the state of world”?) There is a relation between measurements on states
and values of observables and it is “statistical” in the sense that 𝜔(A)= ⟨𝜔, A⟩∈ℝ represent
the measuring of A on the state 𝜔, has to be considered as an average over “experiences”.
Operationally we measure an observable A in a given state 𝜔 by perfoming a sequence of
repeated experiments and taking the average

𝜔(A)= lim
n→∞

1
n�

i=1

n

m𝜔
(i)(A),

where each m𝜔
(i)(A) is the i-th measurament of A in the state 𝜔. A state is a map 𝜔: 𝒪→ ℝ

understood as all the values it takes on every possible observable 𝜔≡{𝜔(A): A∈𝒪}.

We have the following relations between states and observables. You know that different states
exists because when we measure an observable we get different numbers:

𝜔(A)=𝜔′(A),∀A∈𝒪⇔𝜔=𝜔′.

You know that two observables are different because there is a state where they give different
values:

𝜔(A)=𝜔(B),∀𝜔∈𝒮⇔ A=B.

With respect to the operations we defined on observable we obtain the followin relations:

𝜔(𝜆A)=𝜆𝜔(A), 𝜔(An + Am)=𝜔(An)+𝜔(Am).

𝜔(A0)=1⇒ A0=1,𝜔(1)=1.

An observable is positive iff its value on any state is positive:

A⩾0⇔ A=B2⇔∀𝜔:𝜔(A)=𝜔(B2)⩾0.

Therefore states are positive and normalized linear functionals on 𝒪. We introduce a norm on 𝒪
which measure the size of an observable A∈𝒪 via the largest possible value of a state on it:

‖A‖= sup
𝜔∈𝒮

|𝜔(A)|

Then

‖𝜆A‖= |𝜆|‖A‖, ‖A‖=0⇒ A=0.

We have also

‖A2‖= ‖A‖2.
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Indeed

𝜔(‖A‖± A)=‖A‖±𝜔(A)⩾0“⇒”‖A‖± A⩾0.

‖A‖2− A2=(‖A‖+ A)(‖A‖− A)⩾0⇒𝜔(‖A‖2− A2)⩾0⇒‖A‖2−𝜔(A2)⩾0.

On the other hand

0⩽(‖A‖± A)2 =‖A‖2 + A2 ±2‖A‖A⇒2‖A‖|𝜔(A)|⩽‖A‖2 +𝜔(A2)⩽‖A‖2 +‖A2‖

taking sup over 𝜔 in 2‖A‖|𝜔(A)|⩽‖A‖2 +‖A2‖ we get ‖A‖2 ⩽‖A2‖.

The states induce a linear structure over 𝒪: we can define a new observable C by doing

𝜔(C)=𝜔(A)+𝜔(B),

for given A,B∈𝒪. We can extend 𝒪 to a linear space and

‖A+B‖⩽‖A‖+‖B‖.

So at this point if we assume completeness we will have a Banach space, but we are still not
accounting for sequentials measurements. What about AB? Is not possible to define this using
the previous arguments (i.e. via duality with states) if the observables are not simultaneously
measurable (think about position and speed of a ball or frequency and duration of a musical note).
If you cannot measure them simultaneously, then you cannot recover 𝜔(AB) from 𝜔(A) and
𝜔(B).

It is reasonable to postulate that a physical system is defined by the set of its observable endowed
with the operation of multiplication with scalars, addition and squaring (as we discussed above).
That is to say that two physical systems are to be considered equivalent if their set of observables
can be mapped one onto the other while preserving these structures. On such a structure one can
define a notion of product (not associative in genera) via

A∘B= 1
2[(A+B)2− A2−B2].

See in the book of Strocchi the discussion on this point at page 19, working with Jordan algebras.
In order to obtain a well behaved mathematical theory we will introduce now an assumption
which, while compatible with the previous discussion, cannot be justifyied on empirical ground.

Crucial techinical assumption. 𝒪⊆𝒜 where 𝒜 is a (non-commutative) algebra over ℂ with
involution A↦ A∗ and such that the following properties are true

(𝜆A+𝛽B)∗ =𝜆̄A∗ +𝛽̄B∗, (AB)∗ =B∗A∗

∀A∈𝒜, A∗A⩾0, 𝜔(A∗A)⩾0 𝜔∈𝒮

‖AB‖≔ sup
𝜔∈𝒮

|𝜔(AB)|⩽ ‖A‖ ‖B‖. ‖A∗A‖=‖A‖‖A∗‖.

One simple consequence: take 𝜆∈ℝ

0⩽𝜔((𝜆A+1)∗(𝜆A+1))=𝜆2𝜔(A∗A)+𝜆𝜔(A∗)+𝜆𝜔(A)+1
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then 𝜔(A∗)=𝜔(A) and from this we have ‖A∗‖=‖A‖.

These technical assumptions can be implemented by assuming the following more coincise set-
ting:

• Observables form a C∗-algebra 𝒜 with unity.

• States 𝒮 are normalized positive linear functionals on 𝒜. We assume the set of states to
be full (i.e. it separates the observables). Moreover observables should separate states (but
this is by definition). Usually 𝒮 is only a subset of all the positive linear functionals.

Example. Classical mechanical system (q, p) ∈ Γ ⊆ T ∗ℝn ≈ ℝn × ℝn where q is position and p
momentum. The set of observables are the (continuous) functions 𝒜=C(Γ,ℂ) f ∗(q, p)= f (q, p).
The states are (a subset of) the probability measures on Γ:

𝜔( f )=�
Γ

f (q, p)𝜔(dq×dp).

‖ f ‖= sup
𝜔∈𝒮

|𝜔( f )|.

In classical physics one assume that states of the form 𝜔 = 𝛿(q0,p0) are possible, these states are
characterised by the fact that the dispersion

Δ𝜔( f )=[𝜔( f 2−𝜔( f )2)]1/2⩾0,

is zero for all observables.

3 C∗-algebras
We discuss now the implication of the basic assumption on a physical system.

Definition 1. A C∗-algebra 𝒜 is an associative algebra over ℂ which is endowed with the fol-
lowing additional structures: a norm ‖⋅‖ for which 𝒜 is complete and which satisfy ‖ab‖⩽‖a‖ ‖b‖
for all a,b∈𝒜 and an antilinear involution ∗:𝒜→𝒜 for which (ab)∗ =b∗a∗. These structures
satisfy the following compatibility condition (C∗ condition)

‖a∗a‖= ‖a‖2, a∈𝒜.

We will usually denote by 1= 1𝒜 the unity of 𝒜. An element a∈ 𝒜 is self-adjoint if a = a∗, is
normal if a∗a=aa∗, is unitary if a∗a=aa∗ =1𝒜.

Note that ‖a‖2 = ‖a∗a‖ ⩽ ‖a∗‖ ‖a‖, therefore ‖a∗‖ = ‖a‖, i.e. the involution is isometric. Moreover
1∗a=(a∗ 1)∗ =(a∗)∗ =a and therefore 1∗ =1∗1=1, from which follows ‖1‖=1.

Example 2. The algebra of all continuous complex-valued functions C(X) on a compact space
topological Hausdorff space X wrt. the pointwise product and endowed with the supremum norm

‖ f ‖=sup
x∈X

| f (x)|, f ∈C(X)
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is a C∗-algebra.

Example 3. Let ℋ be an Hilbert space. The set of all bounded linear operators ℒ(ℋ) on ℋ
together with the operator norm

‖A‖=sup
𝜑≠0

‖A𝜑‖
‖𝜑‖ , A∈ℒ(ℋ),

and the involution given by the adjuction wrt. the scalar product of ℋ, is a C∗ algebra, indeed by
the property of the Hilbert space norm we have

‖A∗A‖= sup
‖𝜑‖=1

‖A∗A𝜑‖= sup
‖𝜑‖=‖𝜓‖=1

⟨𝜓, A∗A𝜑⟩= sup
‖𝜑‖=‖𝜓‖=1

⟨A𝜓, A𝜑⟩⩽‖A‖2

and

‖A‖2 = sup
‖𝜑‖=1

‖A𝜑‖2= sup
‖𝜑‖=1

⟨A𝜑, A𝜑⟩= sup
‖𝜑‖=1

⟨𝜑, A∗A𝜑⟩⩽‖A∗A‖.

Any norm-closed subalgebra ℬ of ℒ(ℋ) which is self-adjoint, i.e. ℬ = ℬ∗ is a concrete C∗-
algebra. For example, the compact operators form such a subalgebra or the C∗-algebra C(T)
generated by a single bounded self-adjoint operator T , i.e. the closure of all the polynomials in T ,
T ∗, I.

Definition 4. A Banach algebra ℬ is a Banach space with a product such that ‖ab‖⩽‖a‖ ‖b‖.

Example 5. Take L1(ℝ;ℂ) with product given by convolution, then it is a Banach algebra. The
same is true for L1(ℝ+;ℂ) with half-line convolution.

3.1 Spectral theory

In any (unital) Banach algebra ℬ we can define the spectrum 𝜎(a)=𝜎ℬ(a) of an element a∈ℬ
to be the set of 𝜆∈ℂ for which (𝜆 −a) is not invertible in ℬ. The complement of the spectrum
is called the resolvent set and Ra(𝜆)=(𝜆−a)−1 is the resolvent function.

Theorem 6. For any a ∈ ℬ, the spectrum 𝜎(a) is a non-empty compact set and the resolvent
function is analytic in ℂ\𝜎(a).

Proof. For |𝜆| large enough (i.e. |𝜆|>‖a‖) we have

Ra(𝜆)=(𝜆−a)−1= �
n⩾0

𝜆−1−nan (1)

where the series is convergent in ℬ. This shows that Ra(𝜆) is analytic with Laurent expansion
at infinity and there Ra(𝜆)→0. On the other hand, if 𝜇−a is invertible, we have the convergent
series expansion

Ra(𝜆)=(𝜆−a)−1 = �
n⩾0

(𝜇−a)−n−1(𝜆−𝜇)n
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valid in a neighborhood of 𝜇 ∈ ℂ. So the resolvent is analytic in the complement of 𝜎(a) and
(𝜎(a))c is an open set containing all 𝜆∈ℂ such that |𝜆|>‖a‖, therefore 𝜎(a) is compact. Assume
that 𝜎(a) is empty. Then Ra(𝜆) would be an entire function of 𝜆 which go to zero at infinity. As a
consequence Ra(𝜆) should be constant. Indeed this is true for f (Ra(𝜆)) for any continuous linear
functional f and by Hanh-Banach this implies that Ra(𝜆) = 0. Therefore the spectrum must be
non-empty. □

Proposition 7. (Spectral radius formula) For any a∈ℬ we have

𝜌(a)≔ sup
𝜆∈𝜎(a)

|𝜆|= lim
n→∞

‖an‖1/n ⩽‖a‖

with equality in case of a normal element of a C∗-algebra.

Proof. Let r =infn→∞ ‖an‖1/n, then r ⩽‖a‖. Take m such that ‖am‖1/m ⩽ r +𝜀, then

r ⩽liminf
n→∞

‖an‖1/n ⩽limsup
n→∞

‖an‖1/n =limsup
n→∞

‖amk(n,m)+ℓ(n,m)‖1/n ⩽limsup
n→∞

‖am‖k(n,m)/n‖aℓ(n,m)‖1/n

⩽limsup
n→∞

(r +𝜀)mk(n,m)/n = r +𝜀.

Therefore the limit indeed exists and equality is true for normal elements since

‖a2‖2 =‖a∗a∗aa‖=‖aa∗a∗a‖=‖a∗a‖2=‖a‖4

and therefore �a2k�= ‖a‖2k and ‖a‖= limk→∞ �a2k�2−k =limn→∞ ‖an‖1/n. By the convergence of the
resolvent series (1) we have that r =sup𝜆∈𝜎(a) |𝜆|. □

A linear functional 𝜑: ℬ → ℂ is multiplicative if 𝜑(ab) = 𝜑(a)𝜑(b). The space ℬ∗ of linear
functionals on ℬ is a Banach space with the norm ‖𝜑‖=supa∈ℬ,‖a‖⩽1 |𝜑(a)|. The weak-∗ topology
on ℬ∗ is the topology generated by the system of neighborhoods of the form

N𝜓,a1, . . . ,an,𝜀 ={𝜑∈ℬ′: |𝜓(ai)−𝜑(ai)|⩽𝜀, i=1, . . . ,n}

for 𝜓∈ℬ′, a1, . . . ,an ∈ℬ, 𝜀>0. It is the coarsest topology for which the maps 𝜑∈ℬ′↦ â(𝜑)=
𝜑(a)∈ ℂ are continuous for all a ∈ℬ. The Banach-Alaoglu theorem ensure that the closed unit
ball of ℬ∗ is compact for the weak-∗ topology.

Lemma 8. The space Σ(ℬ) of all the multiplicative linear functionals on ℬ is a compact Haus-
dorff space when endowed with the weak-∗ topology.

Proof. Let 𝜑∈Σ(ℬ). Assume that 1=𝜑(a)>‖a‖, let b be the solution to b=1+ab which exists
since ‖a‖<1, then 𝜑(b)=𝜑(1)+𝜑(a)𝜑(b) which implies 𝜑(1)=0 and therefore 𝜑(a)=𝜑(a1)=
𝜑(a)𝜑(1)=0 giving a contradiction. Therefore we have |𝜑(a)|⩽‖a‖, that is 𝜑 is continuous. On
the space of all linear functionals we can consider the norm ‖𝜑‖ =sup‖a‖=1 |𝜑(a)| and obtain that
‖𝜑‖=1. Therefore by Banach-Alaoglu the unit ball is weakly-∗ compact. Limits of multiplicative
functionals are multiplicative, so Σ(ℬ) is also compact. □
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For any a ∈ℬ we can define a continuous function â:Σ(ℬ)→ ℂ as â(𝜑)=𝜑(a), it is called the
Gelfand transform of a. The function is continuous by the definition of the weak-∗ topology on
linear functionals.

Theorem 9. The Gelfand transform is a contractive algebra homomorphism from ℬ to C(Σ(ℬ)).
The image algebra separates the points of Σ(ℬ).

Proof. We have ab�(𝜑)=𝜑(ab)=𝜑(a)𝜑(b)= â(𝜑)b̂(𝜑) and ‖â ‖=sup𝜑∈Σ(ℬ) |â (𝜑)|⩽‖a‖. For any
two points 𝜑≠𝜓 in Σ(ℬ) there exists a∈ℬ such that 𝜑(a)≠𝜓(a), therefore â(𝜑)≠ â(𝜓). □

For commutative Banach algebra ℬ any proper maximal ideal is closed and any proper ideal is
contained in a proper maximal ideal. Moreover let ℐ a proper maximal ideal, then the quotient
ℬ\ℐ is a Banach algebra and any a ∈ ℬ\ℐ is invertible, since otherwise (a + ℐ)ℬ would be
a proper ideal containing 𝒥. But a Banach algebra where any element is invertible must be ℂ
(Gelfand–Mazur theorem) so ℬ\ℐ=ℂ and 𝒥 is of codimension 1.

Remark 10. (Gelfand–Mazur) Assume that all the elements except 0 of a Banach algebra ℬ are
invertible, then take a∈ℬ and 𝜆∈𝜎(a). Since 𝜆−a is assumed to be not invertible we must have
𝜆−a=0 and therefore a=𝜆. That is ℬ=ℂ.

A consequence is:

Corollary 11. Assume ℬ is commutative. If a∈ℬ is invertible iff â∈Σ(ℬ) is invertible, that is
â(𝜑)≠ 0 for all 𝜑 ∈ Σ(ℬ). Therefore 𝜎(a)= 𝜎(â)= {𝜑(a):𝜑 ∈ Σ(B)} and sup {|𝜆|:𝜆 ∈ 𝜎(a)}=
‖â‖∞.

Proof. If a is invertible then 1 = 𝜑(aa−1)= 𝜑(a)𝜑(a−1) so (â)−1 = (a−1) and therefore â(𝜑) ≠ 0
for all 𝜑. If a is not invertible, then aℬ is a proper ideal of ℬ since 1∈aℬ. Let ℐ be a maximal
proper ideal containing aℬ and let 𝜑=0 on ℐ and 𝜑(1)=1. Then 𝜑 is multiplicative and â(𝜑)=0.
To prove that 𝜎(â) = {𝜑(a): 𝜑 ∈ Σ(B)} observe that if 𝜆 ∈ 𝜎(â) then 𝜆 − a is not invertible and
𝒥=(𝜆−a)ℬ is an ideal contained in a maximal ideal. If 𝜑 is the corresponding linear functional
then 𝜑(𝜆−a)=0 since obviously 𝜆−a∈ℐ and therefore 𝜑(a)=𝜆. So for any 𝜆∈𝜎(a) there is a
multiplicative 𝜑 for which 𝜆=𝜑(a). So 𝜎(â)⊆{𝜑(a):𝜑∈Σ(B)}. On the other hand if 𝜑(𝜆−a)=
0 then (𝜆−a)ℬ⊆ker(𝜑) therefore 𝜆−a cannot be invertible because otherwise if (𝜆−a)−1 exists
then 1=(𝜆−a)−1(𝜆−a)∈(𝜆−a)ℬ⊆ker(𝜑) so ker(𝜑) cannot be a proper ideal. □

Example 12. For L1(ℝ; ℂ) with product given by convolution the Gelfand transform is the
Fourier transform. For L1(ℝ+;ℂ) with half-line convolution the Gelfand transform is the Laplace
transform.

In the case of C∗ algebras we have an isomorphism 𝒜≈C(Σ(𝒜)) of C∗ algebras.

Theorem 13. (Gelfand–Naimark) Any abelian C∗-algebra 𝒜 is isometrically isomorphic to
C(Σ(𝒜)).
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Proof. We need to check the correct behaviour of the involution, that is 𝜑(a∗)=𝜑(a). However
note that if a is self-adjoint, then Ut =e iat is unitary and therefore |𝜑(Ut)|⩽‖Ut‖=1. Moreover by
the multiplicative property

1⩾ |𝜑(Ut)|= |exp(i𝜑(a)t)|=exp(−Im(𝜑(a))t).

From which we deduce that 𝜑(a)∈ℝ. Decomposing any a∈𝒜 as a=b+ ic, with b,c self-adjoint,
we obtain that

𝜑(a∗)=𝜑(b− ic)=𝜑(b)− i𝜑(c)=𝜑(b)+ i𝜑(c)=𝜑(a),

that is a∗� = ā̂. Remember that for C∗-algebras we have that if a is normal then ‖a‖𝒜 = 𝜚𝒜(a)
therefore we have

‖a‖𝒜 =‖â‖C(Σ(ℬ)).

Now use againg the C∗condition to get for any a∈𝒜 (observe that a∗a is self-adjoint)

‖a‖2 ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐
C∗

‖a∗a‖= ‖a∗a�‖=‖a∗� â‖∞ =‖ā̂ â‖C(Σ(𝒜)) ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐
C ∗

‖â‖C(Σ(𝒜))
2

so we conclude that the transform is an isomorphism. It is one to one since if 𝜑(a)=𝜑(b) for all
𝜑 then 𝜑(a−b)=0 for all 𝜑, this implies that ‖a−b‖=0. □

Remark 14. Multiplicative linear functionals in ℬ corresponds to maximal proper ideals. See
Strocchi for the details.

Exercise 1. Prove that the set of diagonal n ×n matrices with complex entries is an abelian C ∗ algebra. Determine
𝜎(a) for any a ∈𝒜 and Σ(𝒜).

The Gelfand–Naimark theorem allows a functional calculus on the normal elements of a C∗

algebra.

If a ∈ 𝒜 is normal, then the C∗ algebra C∗(a) (generated by 1, a, a∗) is Abelian and therefore
isomorphic to C(Σ(C∗(a))) but 𝜑 ∈ Σ(C∗(a)) is uniquely determined by the value of 𝜑(a) ∈
ℂ since for any polynomial p(a, a∗) we have 𝜑(p(a, a∗)) = p(𝜑(a), 𝜑(a)). Then 𝜎(a)= 𝜎(â)=
{𝜑(a):𝜑 ∈ Σ(C∗(a))} and Σ(C∗(a))= 𝜎(a). This means that for any f ∈C(𝜎(a)) there exists a
unique h∈C∗(a) such that ĥ= f under the Gelfand transform map. In this case we write h= f (a).

Is easy to see that f (g(a))=( f ∘g)(a), that f (a) is self-adjoint if f is real, etc.. .

Observe that, since C∗( f (a))⊆C∗(a) for any continuous f :𝜎(a)→ℝ and normal a we have

𝜎( f (a))={𝜑( f (a)):𝜑∈Σ(C∗(a))}={ f (𝜑(a)):𝜑∈Σ(C∗(a))}= f (𝜎(a)).

With non-normal elements one has a similar relations, however not is such great generality. Let
a∈𝒜 and f (z)=∑n⩾0 cnzn be holomorphic in a neighborhood of 𝜎(a), then f (a)=∑cnan is well
defined and 𝜎( f (a))= f (𝜎(a)) (spectral mapping principle). This is easy to see for polynomials.
An interesting case is 𝜎(a−1)=(𝜎(a))−1.
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Moreover 𝜎(ab) and 𝜎(ba) differ at most by {0}. Indeed let 𝜆∈𝜎(ba) and let c=(𝜆−ba)−1 then

(𝜆−ab)(1+acb)=(𝜆+𝜆acb−ab−abacb)=(𝜆−ab+a (𝜆−ba)cb)=(𝜆−ab+ab)=𝜆

so 𝜆−ab is also inverible unless 𝜆=0.

If a is unitary (i.e aa∗ =1=a∗ a) then 𝜎(a)⊆{z: |z| =1}.

If a is self-adjoint then 𝜎(a) contains either ±‖a‖: indeed recall that 𝜎(a) is compact. For selfad-
joint a we have 𝜎(a)⊆ℝ and by compactness and the fact that 𝜚(a)=‖a‖ we conclude that there
exists 𝜆∈ℝ such that |𝜆|=‖a‖.

The continuous functional calculus for a self-adjoint element a can be developed also as follows.
Consider the map T : p ↦ p(a) where p runs over complex polynomials. Then by the spectral
mapping principle we have 𝜎(p(a))= p(𝜎(a)) and ‖p(a)‖=𝜚(p(a))=sup𝜆∈𝜎(a) |p(𝜆)| so ‖p(a)‖=
‖p‖C(𝜎(a)). By Stone-Weierstrass, polynomials are dense in C(𝜎(a)) (since 𝜎(a) is compact) and
we have that T extends by continuity to a map on T : C(𝜎(a)) → C∗(a) moreover T( f )T(g) =
T( fg), T( f )∗ =T( f̄ ) and ‖T( f )‖= ‖ f ‖ so it is an isomorphism of C∗ algebras.

3.2 Positive elements

Definition 15. We call a∈𝒜 positive if a is self-adjoint and 𝜎(a)⊆ℝ+ and we denote with 𝒜+
the set of positive elements of 𝒜 and also write a⩾0.

Some properties of positive elements have simple and clever proofs.

• If a,b∈𝒜+ and a+b=0 then a=b=0. Indeed 𝜎(−b)=−𝜎(b)∈ℝ+⇒𝜎(b)={0}⇒b=0. (use
the spectral mapping principle and that ‖b‖=𝜚(b)=0). Now take a+b+c=0 with a,b,c∈𝒜+

• If a is self-adjoint and ‖a‖⩽1 then a∈𝒜+ iff ‖1−a‖⩽1. Indeed if a⩾0 then 𝜎(1−a)⊆[0, 1]
and 𝜚(1 − a) = ‖1 − a‖ ⩽ 1. Conversely ‖1 − a‖ ⩽ 1, ‖a‖ ⩽ 1 imply that 𝜎(a) is contained in the
intersection of two balls of radius 1 centred in 1 and 0, that is 𝜎(a)⊆[0,1]⊆ℝ+.

• 𝒜+ is a cone, i.e. 𝜆a ⩾ 0 if a ⩾ 0 for all 𝜆 > 0. Moreover if a, b ⩾ 0 and ‖a‖, ‖b‖ ⩽ 1 then let
c=(a+b)/2 and observe that ‖c‖⩽1 and

‖1−c‖⩽ 1
2‖1−a‖+ 1

2‖1−b‖⩽1

so c⩾0. Therefore 𝒜+ is closed convex cone. It is closed since if an →a and an ⩾0 then we
can rescale the sequence in such a way to get supn ‖an‖⩽1 and therefore ‖1−a‖=lim‖1−an‖⩽1
and ‖a‖⩽1 so a⩾0.

• By functional calculus every positive element has a positive square root a1/2. It can be con-
structed as limit of polynomials in a (without constant term). Therefore the product of two
commuting positive elements is positive. The positive square root is unique, indeed if b,c⩾0
are such that b2 =c2=a we have that a,b,c commute among themselves and

0=(b2− c2)(b−c)=b3+b2c+c2b− c3 =(b−c)2(b+c)⩾0
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so we need to have (b− c)2b=(b− c)2c=0 so 0=(b− c)2b− (b − c)2c=(b− c)3 and therefore
b= c.

• By functional calculus one can decompose any self-adjoint element into the difference of two
positive elements a=a+ −a− .

• Any element a ∈ 𝒜 is the sum of four unitaries. Indeed write a = p + iq with self-adjoint
elements p, q and then assuming ‖p‖, ‖q‖ ⩽ 1 consider the unitaties p ± i(1 − p2)1/2 and q ±
i(1−q2)1/2.

Note that ny ℒ(ℋ) any operator in the form A∗A is positive (i.e. it has positive spectrum) .

This was conjectured to be true also in abstract C∗ algebras but Gelfand and Naimark could not
prove it. The result was proven later by Kelley and Vaught and surprisingly the proof is quite
nontrivial (but not long). We skip it, just register the fact that in a C∗ algebra the following
properties are equivalent:

1) a∈𝒜+, 2) a=b2,b=b∗, 3) ‖1−a/‖a‖‖⩽1, 4) a=c∗c.

As we have seen property 3) implies that 𝒜+ is a closed convex cone. We say that a ⩾ b if
a−b∈𝒜+.

Remark 16. If a,b⩾0 then a+b⩾0 however positivity is tricky due to non-commutativity. For
example even if 0⩽a⩽b it does not follow in general that a2 ⩽b2 unless a,b commute. If we try
to define |a| = (a∗a)1/2 then is not true that |a+b|⩽ |a|+ |b|.

Let us give some true inequalities.

• We have a⩽‖a‖ and a2 ⩽‖a‖a as easily seen from spectral consideations.

• a⩾0 implies cac∗ ⩾0 and by difference a⩾b⇒cac∗ ⩾cbc∗.

• a⩾b⩾0 then (𝜆−a)−1⩽(𝜆−b)−1 for 𝜆⩾0. (see Meyer for a proof)

• a⩾b⇒ f (a)⩾ f (b) for functions of the form f (x)= x𝛼 with 𝛼∈(0,1).

Let us note the following.

Proposition 17. Let 𝜔 is a continuous linear functional such that ‖𝜔‖ = 𝜔(1)= 1 then 𝜔(a∗)=
𝜔(a).

Proof. We can assume that a is s.a. since then is easy to conclude. Assume that 𝜔(a) = f + ig
with f ,g∈ℝ I need to prove that g=0. Take a+ ic with c∈ℝ and observe that (a+ ic)∗(a+ ic)=
a2+ c2 then 𝜔(a+ ic)= f + i(g+ c) so

f 2+(g+ c)2= |𝜔(a+ ic)|2⩽‖a+ ic‖2=
C ∗‖(a+ ic)∗(a+ ic)‖= ‖a2 +c2‖⩽ ‖a2‖+c2⩽‖a‖2+ c2.

Now c is arbitrary so we get that g2+2gc⩽‖a‖2 which is impossible unless g=0. □
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3.3 States on C∗ algebras

A linear functional on 𝒜 is positive if 𝜔(a)⩾0 for all a∈𝒜+.

For positive linear functionals Cauchy-Schwarz inequality holds true:

|𝜔(a∗b)|2⩽𝜔(a∗a)𝜔(b∗b).

Then we have

Proposition 18. A linear functional 𝜔∈𝒜∗ is positive iff ‖𝜔‖=𝜔(1).

Proof. Note that ‖a‖−a⩾0 then if 𝜔 is positive we have ‖a‖𝜔(1)⩾𝜔(a). On the other hand the
Cauchy–Schwartz inequality holds for 𝜔 and

|𝜔(a)|2⩽𝜔(1)𝜔(a∗a)⩽𝜔(1)2‖a∗a‖⩽𝜔(1)2‖a‖2,

so 𝜔 is bounded and ‖𝜔‖⩽ |𝜔(1)|=𝜔(1). On the other hand if 𝜔 is bounded and ‖𝜔‖=𝜔(1) we
can assume that 𝜔(1)=1. Then for any a⩾0 with ‖a‖=1 we have also |𝜔(1−a)|⩽𝜔(1)=1 which
implies |1−𝜔(a)|⩽1 but since 𝜔(a)=𝜔(a∗)=𝜔(a) we have 𝜔(a)∈ℝ and therefore 𝜔(a)⩾0. □

Proposition 19. Positive linear functionals separate 𝒜 and a∈𝒜+ iff 𝜔(a)⩾0 for all positive
linear functionals 𝜔.

Proof. Assume that 𝜔(a)=0 for all positive 𝜔. Decompose a=b+ ic with self-adjoint b,c. Then
𝜔(b)=𝜔(c)=0. But this implies that b̂= ĉ=0 and by Gelfand's isomorphism that b=c=0 (recall
that multiplicative functionals are bounded and therefore positive). Let us now prove the second
part. If 𝜔(a)⩾0 we have that 𝜔(a)=𝜔(a∗) and 𝜔(a−a∗)=0. Since positive functionals separate
𝒜 we must have a=a∗. But then taking 𝜔 to be multiplicative we deduce that 𝜎(a)⊆ℝ+, that is
a∈𝒜+. Let us prove the first part. □

Recall that a state isa normalized positive linear functional on 𝒜. The set of positive linear func-
tionals of norm ⩽1 is a compact convex closed set (in the weak-∗ topology). By a theorem of
Krein–Milman it is the closed convex hull of its extreme points which are called pure states.
Recall that an extreme point of a convex set is a point which cannot be written as the convex
combination of other points. Pure states separate points in 𝒜.

Example 20. On ℒ(H) the states given by 𝜔(A)= ⟨x, A x⟩ for some normalized x ∈ H are pure
states.

3.4 The Gelfand–Naimark–Segal representation and the GN theorem

So far we conceptualized the basic structure of a physical system and the related observation and
measurament theory (algebra of observables and the convex set of state of physical system). This
applies both to classical and quantum (i.e. non-classical) systems. We also argued that a classical
system is given by an algebra of observables given by continuous functions on a “state space”.
For the moment anything escaping this point of view will be quantum therefore we need to take
a non-commutative algebra (by the Gelfand-Naimark theorem).
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How do we do computations in a non-commutative C∗ algebra? We need (concrete) representa-
tions of non-commutative C∗-algebras in order to use the theory to make prediction and compare
to experiments.

The Gelfand–Naimark–Segal theorem allows to construct representations of C∗ algebras on an
Hilbert space starting from any state 𝜔 (i.e. normalized positive linear functional).

Namely we want to construct a map 𝜑:𝒜 →ℒ(H) for some complex Hilbert space H such that
𝜑 is linear, 𝜑(1) = 1, 𝜑(ab)= 𝜑(a)𝜑(b) and 𝜑(a∗)= 𝜑(a)∗ where on the r.h.s. the involution is
understood as the adjoint in the Hilbert space. This is also called a ∗-homomorphism.

Remark 21. Any multiplicative functional 𝜑:𝒜 → ℂ give a one-dimensional representation on
the Hilbert space H =ℂ.

Let us observe that any such representation is necessarily a contraction. Indeed note that if 𝜆−a
is invertible in 𝒜 then exists c∈𝒜 s.t. c(𝜆−a)=1 that implies 𝜑(c)(𝜆−𝜑(a))= 1 so 𝜆−𝜑(a)
is also invertible, that is 𝜎ℒ(H)(𝜑(a))⊆𝜎𝒜(a). So for C∗-algebras

‖𝜑(a)‖ℒ(H)=C∗𝜚ℒ(H)(𝜑(a))⩽𝜚𝒜(a)=
C ∗‖a‖.

If 𝜑 is an isomorphism (on his image), i.e. ker(𝜑)={0} on has that 𝜑 is an isometry since 𝜑−1 is
another representation and ‖a‖=‖𝜑−1(𝜑(a))‖⩽ ‖𝜑(a)‖⩽ ‖a‖.

Each unit vector x ∈ H give rise to a state 𝜔: a ↦ 𝜔(a) = ⟨x, 𝜑(a)x⟩ on 𝒜 (generally not a pure
one). We will see now that every state on 𝒜 arises in this way.

Assume 𝜔 is a state and define the Hermitean form on 𝒜:

⟨a,b⟩𝜔 =𝜔(a∗b).

The linear space 𝒜 with this scalar product is a pre-Hilbert space. Let

𝒩={a∈𝒜:⟨a,a⟩=0}

the set of zero elements and define the Hilbert space H𝜔 = 𝒜\𝒩 where the bar denotes the
completion wrt. the topology generated by the scalar product ⟨, ⟩𝜔. Denotes ‖a‖𝜔 = ⟨a, a⟩𝜔

1/2 the
corresponding norm. Observe that

⟨ba,ba⟩𝜔 =𝜔(a∗b∗ba )⩽‖b∗b ‖𝜔(a∗a)=‖b‖2𝜔(a∗a)= ‖b‖2⟨a,a⟩𝜔

so the operator Lb: H𝜔 → H𝜔 defined by Lba = ba on the dense subset 𝒜 is bounded with norm
‖Lb‖⩽‖b‖. Note that it is well defined, since Lba=0 if a∈𝒩. Moreover LbLc=Lbc and Lb

∗=Lb∗ as
can be easily checked. Therefore a↦La is an homomorphism of C∗ algebras (since {La:a∈𝒜}
is a C∗ subalgebra of ℒ(H𝜔)), indeed recall that ‖Lb‖ℒ(H𝜔)

2 = ‖Lb
∗Lb‖ℒ(H𝜔). So 𝜑𝜔(a) = La is a

representation of 𝒜 on H𝜔 and if we denote by Ω𝜔 =[1]∈ℋ𝜔 we have 𝜔(a)= ⟨Ω𝜔,LaΩ𝜔⟩.

Note that the set {LaΩ𝜔:a∈𝒜}⊆H𝜔 is dense in H𝜔. Then one says that Ω𝜔 is a cyclic vector for
the representation 𝜑𝜔 and that the representation is cyclic.
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If K is another Hilbert space supporting a cyclic representation 𝜋:𝒜→ℒ(K) with cyclic vector
𝜓 ∈ K such that 𝜔(a) = ⟨𝜓, 𝜋(a)𝜓⟩K then the map a ∈ 𝒜 ↦ 𝜋(a)𝜓 ∈ K is an densely defined
isometry from H𝜔 to K since

⟨a,a⟩H𝜔 =𝜔(a∗a)= ⟨𝜋(a)𝜓,𝜋(a)𝜓⟩K.

Therefore the cyclic representations of 𝒜 associated to a state 𝜔 are unique up to isomorphism.
In general one call it the GNS representation associated to the state 𝜔.

• A state 𝜔 is faithful is 𝜔(a∗a)=0⇒a=0. Which implies that ‖LaΩ𝜔‖𝜔 =0⇒a=0. The GNS
representation is faithful if La =0⇒a=0 which is a weaker property.

• Consider the commutative setting and let H =L2(Ω,ℱ,𝜇) for some probability space (Ω,ℱ,
𝜇) then on this space there are three different C∗ algebras acting with pointwise multiplication
on the elements of H: that of the continuous functions (taking ℱ to be the Borel 𝜎-algebra on
some compact space K), that of the measurable functions and that of the L∞(𝜇) functions (i.e.
equivalence classes modulo 𝜇-null sets).

• A measure 𝜇 on a compact space K with the Borel 𝜎-algebra ℱ gives a faithful representation
of C(K) if the support of 𝜇 is K. 𝜇 is never faithful on measurable function and by construc-
tion is faithful on L∞(𝜇).

• The space H𝜔 of the GNS construction can be thought as a non-commutative version of the
commutative L2(Ω,ℱ,𝜇). However here right multiplication Rba=ab is not in general given
by a bounded operator.

• And one cannot obtain faithful representations by quotienting (like in L∞(𝜇) because 𝒩 is
only a left ideal). This is however possible if the state is tracial, i.e. 𝜔(ab)=𝜔(ba).

Since states separate elements of 𝒜 there are enough GNS representations to build a faithful rep-
resentation of any C∗ algebra, as stated by the (non-commutative) Gelfand–Naimark theorem.

Theorem 22. (Gelfand–Naimark) The exists a faithful representation of 𝒜 in Hilbert space H

The Gelfand–Naimark theorem construct faithful representation of 𝒜 in Hilbert space by a direct
sum of the GNS representations over all the states.

Let 𝒮 be the set of all the positive normalized states of 𝒜 and consider the Hilbert space H =
⊕𝜔∈𝒮H𝜔 where the elements are (finite) families x = (x𝜔)𝜔∈𝒮 with x𝜔 ∈ H𝜔, where the scalar
product is

⟨x,x⟩H = �
𝜔∈𝒮

⟨x𝜔,x𝜔⟩H𝜔

and where 𝜑(a)x = (𝜑𝜔(a)x𝜔)𝜔∈𝒮. Then 𝜑 is a isometric representation of 𝒜 in ℒ(H).
(Gelfand–Naimark theorem)

Assume that 𝜑(a) = 0. Then 0 = ‖𝜑𝜔(a)‖H𝜔
2 = 𝜔(a∗a) for all 𝜔 ∈ 𝒮. However we have already

seen that positive linear functionals separate elements of 𝒜 so a∗a=0 and a=0. Therefore 𝜑 is
injective and this implies that it is an isomorphism.
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If 𝒜 is separable is possible to take a countable subset of 𝒮 to perform the construction, in this
case H will become separable.

Then GN theorem shows that there is no loss of generality to consider representations of physical
systems in Hilbert space.

Remark 23. Consider a state 𝜔 and a self-adjoint a such that 𝜔 is dispersion-free wrt. a, i.e.
0=Δ𝜔(a)=[𝜔((a−𝜔(a))2)]1/2 then in the corresponding GNS representation we have

𝜔((a−𝜔(a))2)=⟨Ω𝜔, (𝜑(a)−𝜔(a))2Ω𝜔⟩= ‖(𝜑(a)−𝜔(a))Ω𝜔‖2

so (𝜑(a) − 𝜔(a))Ω𝜔 = 0 and 𝜔(a) is an eigenvalue of 𝜑(a) with eigenvector Ω𝜔. In particular
𝜔(a) should be in 𝜎(𝜑(a))⊆𝜎(a).

3.5 Pure states and irreducible representations

We want now to discuss briefly the “simplest” representations.

Definition 24. A representation 𝜑 on the Hilbert space H is irreducible if the only invariant
subspaces of the family (𝜑(a))a∈𝒜 are {0} and H.

Lemma 25. The representation 𝜑: 𝒜 → ℒ(H) is irreducible iff 𝜑(𝒜)′ = ℂ where ℬ′ denotes
the commutant of the algebra ℬ⊆ℒ(H), namely the set of A∈ℒ(H) such that [A,B]=0 for all
B∈ℬ.

Proof. If 𝜑 is reducible then let P be an orthogonal projection on a non-trivial invariant subspace.
Then 𝜑(a)P = P𝜑(a) for all a ∈ 𝒜 and therefore P ∈ 𝜑′(𝒜). On the oher hand if 𝜑 (𝒜)′ ≠ ℂ
then there exists a bounded self-adjoint H ∈ 𝜑(𝒜)′ and we can use it to construct a projector P
by using the spectral calculus of H. Then P∈ 𝜑(𝒜)′ and PH is a nontrivial invariant subspace
of H. □

Note that an irreducible representation is necessarily cyclic wrt. any vector (otherwise there would
be nontrivial invariant subspaces).

Proposition 26. The GNS representation 𝜑𝜔 is irreducible iff 𝜔 is extremal in the set of states,
i.e. a pure state for 𝒜.

Proof. Assume 𝜑𝜔 is reducible, then there exists a projection P ∈ 𝜑𝜔(𝒜)′. Note that PΩ𝜔 ≠ 0
since otherwise P𝜑(a)Ω𝜔 = 𝜑(a)PΩ𝜔 =0 for all a and therefore P =0. Similarly (1−P)Ω𝜔 ≠0.
Then

𝜔(a)= ⟨Ω𝜔,𝜑𝜔(a)Ω𝜔⟩=⟨PΩ𝜔,𝜑𝜔(a)PΩ𝜔⟩+ ⟨(1−P)Ω𝜔,𝜑𝜔(a)(1−P)Ω𝜔⟩

=𝜆𝜔1(a)+(1−𝜆)𝜆𝜔2(a)
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with states 𝜔1(a) = ⟨PΩ𝜔, 𝜑𝜔(a)PΩ𝜔⟩/‖PΩ𝜔‖2, 𝜔2(a) = ⟨(1 − P)Ω𝜔, 𝜑𝜔(a)(1 − P)Ω𝜔⟩/‖(1 −
P)Ω𝜔‖2 and 𝜆 = ‖PΩ𝜔‖2 > 0. So 𝜔 is not extremal. On the other hand if 𝜔 is not extremal then
there exists 𝜔1 and 𝜆∈ (0,1) such that 𝜔(a∗a)⩾𝜆𝜔1(a∗a) so the bilinear form 𝜔1(b∗a) is con-
tinuous on H𝜔 and there exists a nontrivial bounded operator T ∈ ℒ(H𝜔) such that 𝜔1(b∗a) =
⟨b,Ta⟩𝜔. Then

⟨b,T𝜑𝜔(c)a⟩𝜔 =𝜔1(b∗ca)=𝜔1((c∗b)∗ a)=⟨𝜑𝜔(c∗)b,Ta⟩𝜔 =⟨b,𝜑𝜔(c)Ta⟩𝜔

for all a, b ∈ 𝒜 and as a consequence T𝜑𝜔(c) = 𝜑𝜔(c)T so T ∈ 𝜑𝜔(𝒜)′. If T = t ∈ ℂ then
𝜔1(b∗a) = t𝜔(b∗a) and since 𝜔1(1) = 𝜔(1) = 1 we have t = 1 so 𝜔 = 𝜔1, therefore 𝜑𝜔(𝒜)′ ≠
ℂ. □

Corollary 27. A state 𝜔 on a commutative C∗ algebra 𝒜 is pure iff it is multiplicative.

Proof. Note that the GNS construction give a one-dimensional Hilbert space H𝜔 in the commu-
tative case, for any multiplicative 𝜔 since 𝜔(a∗a)= |𝜔(a)|2 so 𝒜\𝒩=ℂ and the projection map
is simply a↦𝜔(a). Therefore 𝜑(𝒜)=ℂ and the representation is obviously irreducible. On any
commutative algebra 𝜑(𝒜)⊆𝜑(𝒜)′=ℂ so 𝜑𝜔(a) is a multiple of 1 by irreducibility we need to
have H=ℂ, so 𝜔(ab)=⟨Ω𝜔,𝜑𝜔(a)𝜑𝜔(b)Ω𝜔⟩=⟨Ω𝜔,𝜑𝜔(a)Ω𝜔⟩⟨Ω𝜔,𝜑𝜔(b)Ω𝜔⟩=𝜔(a)𝜔(b) and
𝜔 is multiplicative. □

Therefore irreducible representations of commutative C∗ algebras corresponds to multiplicative
functionals (think why). And constitute the Gelfand spectrum of the algebra which, as we ahave
see, can be thought of as a space where the algebra is represented as continuous functions. Any
irreducible representation is therefore a point in this space and the element of the algebra act via
point-wise multiplication.

In the non-commutative case and in concordance with the GN theorem, one think to the space
of all irreducible representations as the equivalent “non-commutative space”. Indeed it is clear
that pure states separate points and that they are labelled by the corresponding irreducible repre-
sentation (because of cyclicity and of uniqueness of the GNS representation). However here the
elements of the algebra acts in a more complex way on each “point” 𝜔, namely as linear operators
𝜑𝜔(a) on the corresponding Hilbert space H𝜔.
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