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The C∗algebras we introduced last week (let's call them discrete canonical pairs) gives examples of very
simple and discrete quantum observables. In particular we could take a state on which u has a given value,
meaning that there exist states 𝜔k such that 𝜔k(uℓ)=e2𝜋iℓk/n for all ℓ=1,. . . ,n−1 (recall that un=1). These
states are just given by

𝜔k(a)=⟨𝜑k,a𝜑k⟩

where 𝜑k are the eigenfunctions of u. This means that 𝜔k is multiplicative on C∗(u).

However we have also that it cannot be multiplicative on v (because u, v do not commue) and actually

𝜔k(vℓ)=⟨𝜑k,vℓ𝜑k⟩=0, ℓ=0, . . . ,n−1.

This means that they are uniformly distributed on the set {exp(2𝜋ik/n):k =0, . . . ,n−1}.

Here their maximal complementary shows up in the fact that while one is completely determined, the other
is uniformly distributed.

So in some sense they can be considered the quantum equivalent of discrete uniform random variables.

We would like now to take some limit n →∞ in order to produce in this way continuous analogs of these
algebras. This would give us an example of non-commutative C∗ algebra generated by two abelian subal-
gebras with continuous spectrum.

The intuition we want to carry on is how we go from discrete uniform r.v. to continuous ones. In particular
imagine that X is a r.v. with continuous distribution described by a density p(x) on ℝ. I can imagine to
approximate it in law by taking a discrete r.v. XL such that XL =[X]L for L ∈ℕ where [x]L =⌊Lx⌋/L. Then
we have for any continuous and bounded function f :ℝ→ℝ

𝔼[ f (XL)]=�
ℝ

f ([x]L)p(x)dx →�
ℝ

f (x)p(x)dx =𝔼[ f (X)].

Let's try to implement the same procedure for a C∗-algebra. The first observation is that if we denote (un,vn)
a discrete canonical pair of degree n we have the following. We can take L2(𝕋) as Hilbert space where
𝕋=ℝ\ℤ and represent each un and vn as

unf (x)=exp(2𝜋i [x]n) f (x), vnf (x)= f (x −1/n), x ∈𝕋.

One can check that un,vn is a representation of the algebra we constructed above. In this way we can embed
all the operators (un,vn)n⩾0 into ℒ(L2(𝕋)).

We have to understand what plays the role of “continuous functions” in this context. We just take mono-
mials of the form un

kvn
ℓ (they suffice to determine any other element of C∗(un,vn) due to their commutation

relation). However is easy to see that un
kvn

ℓ →1 in the weak topology of L2(𝕋). Somehow we need to look
at high powers of un, vn to see something interesting. We take ℓn = n1/2[s]n1/2 and kn = n1/2[t]n1/2 and now
consider

⟨ fn,un
knvn

ℓngn⟩L2(𝕋) =�
𝕋

fn(x)exp(2𝜋ikn [x]n)gn(x −ℓn/n)dx.

Note that we choose ℓn, kn in that particular way since the commutation relations reads

un
knvn

ℓn =e2𝜋iknℓn/nvn
ℓnun

kn =e2𝜋i[s]n1/2[t]n1/2vn
ℓnun

kn
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so the choice of the factor n1/2 was due to the nice cancellation in the phase factor here. By rescaling we
have, for functions fn,gn supported on (−𝜋,𝜋) and letting x =y/n1/2.

⟨ fn,un
knvn

ℓngn⟩L2(𝕋)=�
(−𝜋,𝜋)

fn(x)exp(2𝜋i[t]n1/2 [x]nn1/2)gn(x − [s]n1/2/n1/2)dx

=n−1 �
(−𝜋n1/2,𝜋n1/2)

fn(y/n1/2)exp(2𝜋i[t]n1/2 n1/2[y/n1/2]n)gn((y− [s]n1/2)/n1/2)dy

so to have a well defined limit we can take fn(x)=n1/4 f (n1/2x) and gn(x)=n1/4g(n1/2x) with f ,g∈C0
∞(ℝ)

so that for n large enough we have

⟨ fn,un
knvn

ℓngn⟩L2(𝕋)=�
ℝ

f (y)exp(2𝜋i[t]n1/2 n1/2[y/n1/2]n)g(y− [s]n1/2)dy

so here now we can take the limit and obtain that

lim
n

⟨ fn,un
knvn

ℓngn⟩L2(𝕋) =⟨ f ,U(t)V(s)g⟩L2(ℝ) (1)

where (U,V) are two unitary groups acting on L2(ℝ) as

U(t) f (y)=exp(2𝜋ity) f (y), V(s) f (y)= f (y− s).

Unitary group means that U(t)∗=U(−t), U(t)U(s)=U(t + s) for all t, s∈ℝ and U(0)=1. These relations
come from the formula for the convergence in law above.

Exercise 1. Justify that U,V are unitary groups. Actually try to prove it using only (1) and not the explicit form of the operators.

Moreover they are weakly continuous, i.e. t ↦⟨ f ,U(t)g⟩ is continuous for all f ,g∈L2(ℝ). Since they are
unitary they are also strongly continuous.

They satisfying the commutation relations

U(t)V(s)=e2𝜋istV(s)U(t), t, s∈ℝ. (2)

These commutation relations are called the Weyl form of the canonical commutation relations and they are
the implementation of the Heisenberg's commutation relations

[P,Q]= iℏ,

within the C∗-framework (i.e. working only with bounded operators). The link between these formulas
comes from interpreting the two unitary groups as being generated by the self-adjoint operators P,Q i.e. as

U(t)=exp(iQt), V(s)=exp(iPt),

and recalling that Baker-Campbell-Hausdorff forumula gives (under suitable conditions for unbounded
self-adjoint operators A,B with [A,B] given by a scalar that)

eAeB =eA+B+ 1
2[A,B].

Applying it formally to P,Q we have

e iQte iPs =e i(Ps+Qt)+ 1
2[P,Q] =e

1
2[P,Q]e i(Ps+Qt), e iPse iQt =e i(Ps+Qt)− 1

2[P,Q] =e
1
2[P,Q]e i(Ps+Qt)
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so that

e iQte iPs =e iℏste iPse iQt,

so in my notations ℏ=2𝜋.

Putting aside for the moment unbounded operators we obtained a pair of commutative C∗ algebras 𝒬, 𝒫
given by 𝒬 = C∗((U(t))t∈ℝ), 𝒫 = C∗((V(s))s∈ℝ) which are concrete C∗ algebras on L2(ℝ). We denote
𝒜=C∗(𝒬,𝒫).

We will show that the spectrum of 𝒬 and 𝒫 can be identified with a subset of 𝕊 ⊂ ℂ. So they are like
random variables taking values on 𝕊 and they can be easily parametrized by real number. In particular if 𝜔
is a state on 𝒜 then the function t ↦𝜔(U(t)) is continuous on ℝ and positive definite and normalized so
it corresponds to probability measure on ℝ, which we denote by 𝜇𝒬,𝜔 this is the law of 𝒬 on 𝜔. Similarly
for 𝒫. However 𝒬 and 𝒫 do not commute.

The C∗-algebra 𝒜 is called the Weyl algebra. It is the fundamental example of two continuous observables
which do not commute and in some sense they show complementarity.
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