

Lecture 12 - May 27th 2020 - 8:15 via Zoom - M. Gubinelli

Canonical commutation relations

$$U(t)V(s) = V(s)U(t)\exp(2\pi i s t), \qquad s, t \in \mathbb{R}.$$
(1)

Where U, V are two unitary representations of the additive group of the reals, i.e.

$$U(t)U(s) = U(t+s), U(t)^* = U(-t),$$

and similarly for V.

Unitary representations of $\mathbb R$ and observables as homorphisms

For the moment let us concentrate on only one of the families, let's say $(U(t))_{t \in \mathbb{R}}$. I want to look at it at some kind of non-commutative Fourier transfrom (or characteristic function). It is giving me information about ab observable very much like the characteristic function give informations about a random variable.

Assume for the moment that we the family $(U(t))_{t \in \mathbb{R}}$ is a family of bounded operators on an Hilbert space H (giving a representation of \mathbb{R} on H).

For any unit vector $v \in H$ we can form the function $\varphi^{v}(t) = \langle v, U(t)v \rangle$, it is easy to show that $\varphi^{v}(0) = 1$, and φ^{v} is positive definite, i.e.

$$\sum_{i,j} \bar{\lambda}_i \lambda_j \varphi^{\nu}(t_j - t_i) \geqslant 0 \qquad (\lambda_i)_i \subseteq \mathbb{C}, (t_i)_i \subseteq \mathbb{R}.$$

This are the same properties of the characteristic function of a measure, so we want to show that there exist a measure μ^{ν} on \mathbb{R} so that

$$\varphi^{\nu}(t) = \int_{\mathbb{R}} e^{itx} \mu^{\nu}(\mathrm{d}x), \qquad t \in \mathbb{R}.$$

This is essentially Bochner's theorem (given some continuity of φ^{ν}), but are going to sketch a proof because will give us a simple example of more involved reconstruction we encouter later on.

A Radon measure on \mathbb{R} is just a positive functional on $C_0(\mathbb{R})$ (Riesz–Markov–Kakutani).

Let $f \in \mathcal{S}(\mathbb{R})$ a Schwartz function and define

$$T_f \coloneqq \int_{\mathbb{R}} U(t) \hat{f}(t) dt$$

where \hat{f} is the Fourier transform of f. In order for this definition to make sense I need some condition on the family $(U(t))_{t\in\mathbb{R}}$ to be able to integrate it. Is easy to check in simple cases that $(U(t))_{t\in\mathbb{R}}$ is essentially never continuous in the operator norm.

Indeed usually ||U(t) - U(s)|| = 2 for $t \neq s$, think about V(s)f(x) = f(x-s) or $U(t)f(x) = e^{2\pi i x} f(x)$.

So the integral cannot be defined as Bochner integral. But it is reasonable to ask for weak measurability, in the sense that for any $v \in H$ we want $\varphi^v(t)$ to be measurable in t, by polarization this indeed implies that $\langle v, U(t)w \rangle$ is measureable for any $v, w \in H$. (Note indeed that $\langle v, U(t)w \rangle = \sum_{i=1}^4 \lambda_i \langle h_i, U(t)h_i \rangle$ for some four well chosen vectors h_i). So we can define $\langle v, T_f v \rangle \coloneqq \int_{\mathbb{R}} \varphi^v(t) \hat{f}(t) dt$ and polarization define the operator T_f . Note that it is a bounded operator because

$$|\langle v, T_f v \rangle| \leq \int_{\mathbb{R}} |\varphi^v(t)| |\hat{f}(t)| dt \leq ||v||^2 \int_{\mathbb{R}} |\hat{f}(t)| dt \leq C_f ||v||^2$$

for all $f \in \mathcal{S}(\mathbb{R})$ and for all $f \in \mathcal{F}L^1 = \{f \in C(\mathbb{R}): \|\hat{f}\|_{L^1} < \infty\}$. This define a linear functional ℓ^{ν} on $\mathcal{S}(\mathbb{R})$ such that

$$|\ell^{\nu}(f)| \leqslant C_{\nu} ||\hat{f}||_{L^1}.$$

In order to extend this functional to all $C_0(\mathbb{R})$ I need to show that $|\ell^{\nu}(f)| \leq ||f||_{\infty}$ for $f \in \mathcal{S}(\mathbb{R})$. In order to do this one has to use that ℓ^{ν} is positive, that is if $f = g^2 > 0$ then provided $g \in \mathcal{S}(\mathbb{R})$ we have

$$\ell^v(f) = \ell^v(g^2) \ge 0$$

because we use that

$$\int_{\mathbb{R}} \varphi^{\nu}(t) \hat{f}(t) dt = \int_{\mathbb{R}} \int_{\mathbb{R}} \varphi^{\nu}(t+s) \hat{g}(t) \hat{g}(s) dt ds \geqslant 0.$$

because we can approximate the two integrals by finite sums and use the positive definiteness of φ^v . Then one argue by approximation that for any $f \in \mathcal{S}(\mathbb{R})$ one has $\|f\|_{\infty} - f = h \geqslant 0$ and this can be approximated by h_{ε} in $\mathcal{S}(\mathbb{R})$ to get that $\ell^v(h) \geqslant 0$ and this will imply that $\ell^v(f) \leqslant \|f\|_{\infty}$ and the functional can be extended to all $C_0(\mathbb{R})$ by approximation. To make rigorous this argument one need that φ^v is continuous in t.

As soon as we have extended ℓ^{ν} continously we can define a *-representation Q of $C_0(\mathbb{R})$ on $\mathcal{L}(H)$. For any $f \in C_0(\mathbb{R})$ define the operator Q(f) by the relation $\langle v, Q(f)v \rangle = \ell^{\nu}(f)$ and its polarization. This define a bounded operator such that $\|Q(f)\|_{\mathcal{L}(H)} \leq \|f\|_{\infty}$ and $Q(f)^* = Q(\bar{f})$ and Q(f) is linear in f and Q(f)Q(g) = Q(fg) (by continuity is enough to check there relations of $f \in \mathcal{P}(\mathbb{R})$ and this case we have the more precise relation

$$Q(f) = \int_{\mathbb{R}} U(t)\hat{f}(t)dt$$

(remember that the r.h.s is defined as a weak integral). I would like to use $f(x) = e^{isx}$, in order to do this observe that for any $v \in H$

$$\langle v, Q(f)v \rangle = \int_{\mathbb{R}} \varphi^{v}(t)\hat{f}(t)dt,$$

looking at this formula is clear that if $f_n \to f$ in such a way that the r.h.s. converges, so we can take $f_n(x) = e^{isx}e^{-x^2/(2n)}$ so that

$$\langle v, Q(f_n)v \rangle = \int_{\mathbb{R}} \varphi^{v}(t) \hat{f_n}(t) dt = (2\pi n^{-1})^{-1/2} \int_{\mathbb{R}} \varphi^{v}(t) e^{-n(t-s)^2/2} dt \to \varphi^{v}(s)$$

by continuity of φ^{ν} . So this suggest that we can define $Q(e^{is\cdot}) = U(s)$. In order for this to make full sense we need to extend Q to all continuous bounded functions. Short way to do this is to realise that ℓ^{ν} corresponds to a measure μ^{ν} By Riesz-Markov and then just extend it using measure theory. In this case actually you can extend it to all bounded measurable functions on \mathbb{R} .

Note also that if $f_n \uparrow f$ then the sequence $(\langle v, Q(f_n)v \rangle)_n$ is monotone increasing since if $f \geqslant 0$ then $\langle v, Q(f)v \rangle \geqslant 0$ so we can extend Q to all $C_b(\mathbb{R})$. To check that the extension is unique the following argument works.

Take now the family $(h_n(x) = \exp(-nx^2))_n$ then by continuity of φ^v it is easy to prove that

$$Q(h_n) \to 1_{\mathcal{L}(H)}$$
.

Observe that if $f \in C_b(\mathbb{R})$ then $h_n f \in C_0(\mathbb{R})$ and it follows that for any extension Q' of Q to $C_b(\mathbb{R})$ we have

$$Q'(h_n)Q'(f) = Q'(h_nf) = Q(h_nf) = Q(h_n)Q(f)$$

and taking limits we have Q'(f) = Q(f).

So today we proved that for any weakly-continuous one-parameter unitary group in $\mathcal{L}(H)$ we can construct a representation Q of the C^* -algebra $C_b(\mathbb{R})$ on $\mathcal{L}(H)$. It is suggestive to write f(Q) = Q(f) and think to f(Q) as a function computed on an operator Q in such a way that the formula

$$U(t) = \exp(itQ)$$

has now a sense. We could of course associate to Q an unbounded linear operator \hat{Q} on a dense domain within H in such a way that by Stone theorem \hat{Q} is the generator of the group $(U(t))_{t \in \mathbb{R}}$.

From the operational point of view such an homomorphism Q represent an observable in the sense that we can measure its expectation value on any state ω and also we can see it as a random variable with a law given by the linear functional

$$f \mapsto \omega(f(Q)).$$

If we go back to the Weyl relation we now understand that they describe two observables P, Q which satisfy the commutation relations

$$\exp(itQ)\exp(isP) = \exp(2\pi ist)\exp(isP)\exp(itQ)$$
.

Combining unbouded operators is a task of the same difficulty of combining two homomorphism or two unitary representations of \mathbb{R} .

There is no simple way to understand, for example, the sum P + Q.

Tentantively in this course we take the attitude that an observable is really a *-homomorphism of $C_b(\mathbb{R})$ into either some abstract C^* -algebra or into a C^* -algebra of operators. This extends to the non-commutative/quantum context the probabilistic notion of real random variable.

This is coherent with our modelisation which sees observables as self-adoint elements of a C^* -algebra in that if $f: \mathbb{R} \to \mathbb{R}$ then f(Q) is a self-adjoint operator.

The reason to use this different notion is that it can accomodate the case where we have dealing with "unbounded" obserables. Think for example to a Gaussian random variable X. A Gaussian random variable is not an element of a C^* -algebra since X can take arbitrarily large values. However if we look at X has a *-homomorphism by letting X(f) := f(X) for any $f \in C(\mathbb{R})$ then X is a well defined observable. In this case it has a concrete realisation on $L^2(\mathbb{P})$ and if we take $v(\omega) = 1$ we have that

$$\langle v, X(f)v \rangle = \mathbb{E}[f(X)].$$