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Canonical commutation relations
U)V(s)=V(s)U(t)exp(2mist), s,teR. (1)
Where U, V are two unitary representations of the additive group of the reals, i.e.
UnU(s)=U(t+ys), U*=U(-t),

and similarly for V.

Unitary representations of R and observables as homorphisms

For the moment let us concentrate on only one of the families, let's say (U(f)),er. I want to look at it at
some kind of non-commutative Fourier transfrom (or characteristic function). It is giving me information
about ab observable very much like the characteristic function give informations about a random variable.

Assume for the moment that we the family (U (#)),cr is a family of bounded operators on an Hilbert space
H (giving a representation of R on H).

For any unit vector v e H we can form the function ¢"(¢) = (v, U(f)v), it is easy to show that ¢"(0) =1, and
@" is positive definite, i.e.
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This are the same properties of the characteristic function of a measure, so we want to show that there exist
a measure p” on R so that

0"(1) = f e p(dx), reR.
This is essentially Bochner's theorem (given some continuity of ¢"), but are going to sketch a proof because
will give us a simple example of more involved reconstruction we encouter later on.
A Radon measure on R is just a positive functional on Cy(R) (Riesz—Markov—Kakutani).

Let f€ ¥ (R) a Schwartz function and define
T= [ U fndr

where f is the Fourier transform of f. In order for this definition to make sense I need some condition on
the family (U(¢) );er to be able to integrate it. Is easy to check in simple cases that (U(#)),eRr is essentially
never continuous in the operator norm.

Indeed usually |U(t) — U(s)||=2 for t#s, think about V (s) f(x) = f(x—s) or U(¢)f(x) :ez”i"]‘(x)

So the integral cannot be defined as Bochner integral. But it is reasonable to ask for weak measurability,
in the sense that for any ve H we want ¢"(¢) to be measurable in 7, by polarization this indeed implies that
(v, U(t)w) is measureable for any v,w e H. (Note indeed that (v Ut Zl | Aithi, U(2)h;) for some four
well chosen vectors /;). So we can define (v, Ty): fR t)dt and polarization define the operator 7.
Note that it is a bounded operator because
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for all fe #(R) and for all fe FL'= {feC(R): IIfIILu < oo}. This define a linear functional ¢" on ¥ (R)
such that

10" ()I< Coll il

In order to extend this functional to all Cy(R) I need to show that [€"(f)| < | flle for f€ #(R). In order to
do this one has to use that " is positive, that is if f=g>>0 then provided g .#(R) we have

0" (f)=€"(g%) >0
because we use that

[ eroiwar=[_ [ o' a+980a(s)ds>o0.

because we can approximate the two integrals by finite sums and use the positive definiteness of ¢”. Then
one argue by approximation that for any f € ¥ (R) one has ||f|lo—f =/ >0 and this can be approximated by
h.in #(R) to get that €"(h) >0 and this will imply that €"(f) <||f|l~ and the the functional can be extended
to all Co(R) by approximation. To make rigorous this argument one need that ¢" is continuous in z.

As soon as we have extended €" continously we can define a #-representation Q of Cy(R) on B(H). For
any f € Cyo(R) define the operator Q(f) by the relation (v, Q(f)v)=€"(f) and its polarization. This define a

bounded operator such that |Q ()¢ <Ifllo and Q(f)*=Q(f) and Q is linear in f and Q(f)Q(g) = 0(fg)
(by continuity is enough to check there relations of f € #(R) and this case we have the more precise
relation
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(remember that the r.h.s is defined as a weak integral). I would like to use f(x) =¢"*, in order to do this

observe that for any ve H

m.o(m = [, e*nf

looking at this formula is clear that if f, » f in such a way that the r.h.s. converges, so we can take
fu(x) = ™%/ 5o that

.0 = 9" W fundi= Q)2 [ g (e 2d1 - g7 (5)

by continuity of ¢”. So this suggest that we can define Q(e") = U (s). In order for this to make full sense we
need to extend Q to all continuous bounded functions. Short way to do this is to realise that €” corresponds
to a measure u' By Riesz-Markov and then just extend it using measure theory. In this case actually you
can extend it to all bounded measurable functions on R.

Note also that if f,,7 f then the sequence ((v,Q(f,)v)), is monotone increasing since if f >0 then (v, Q(f)v)>
0 so we can extend Q to all C,(R). To check that the extension is unique the following argument works.

Take now the family (/,(x) =exp(-nx?)), then by continuity of ¢" it is easy to prove that
O(hn) = L)
Observe that if f € C,(R) then h,f € Co(R) and it follows that for any extension Q” of Q to C,(R) we have
Q' (h) Q' (f) = Q" (huf) = Q(huf) = Q(h) Q(f)

and taking limits we have Q' (f) = Q(f).



So today we proved that for any weakly-continuous one-parameter unitary group in £ (H) we can construct
a representation Q of the C*-algebra C,(R) on £ (H). It is suggestive to write f(Q) = Q(f) and think to
f(Q) as a function computed on an operator Q in such a way that the formula

U(t) =exp(itQ)
has now a sense. We could of course associate to Q an unbounded linear operator QO on a dense domain

within H in such a way that by Stone theorem Q is the generator of the group (U(t)),eRr.-

From the operational point of view such an homomorphism Q represent an observable in the sense that we
can measure its expectation value on any state @ and also we can see it as a random variable with a law
given by the linear functional

fro(f(Q)).

If we go back to the Weyl relation we now understand that they describe two observables P, Q which satisfy
the commutation relations

exp(itQ)exp(isP)=exp(2mist)exp(isP)exp(itQ).

Combining unbouded operators is a task of the same difficulty of combining two homomorphism or two
unitary representations of R.

There is no simple way to understand, for example, the sum P + Q.

Tentantively in this course we take the attitude that an observable is really a *-homomorphism of C,(R)
into either some abstract C*-algebra or into a C*-algebra of operators. This extends to the non-commuta-
tive/quantum context the probabilistic notion of real random variable.

This is coherent with our modelisation which sees observables as self-adoint elements of a C*-algebra in
that if /: R - R then f(Q) is a self-adjoint operator.

The reason to use this different notion is that it can accomodate the case where we have dealing with
“unbounded” obserables. Think for example to a Gaussian random variable X. A Gaussian random variable
is not an element of a C*-algebra since X can take arbitrarily large values. However if we look at X has a
x-homomorphism by letting X (f) := f(X) for any f € C(R) then X is a well defined observable. In this case
it has a concrete realisation on L*(P) and if we take v(w) = 1 we have that

WX =ElfX)].









