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Canonical commutation relations

U(t)V(s)=V(s)U(t)exp(2𝜋ist), s, t ∈ℝ. (1)

Where U,V are two unitary representations of the additive group of the reals, i.e.

U(t)U(s)=U(t + s), U(t)∗=U(−t),

and similarly for V .

Unitary representations of ℝ and observables as homorphisms

For the moment let us concentrate on only one of the families, let's say (U(t))t∈ℝ. I want to look at it at
some kind of non-commutative Fourier transfrom (or characteristic function). It is giving me information
about ab observable very much like the characteristic function give informations about a random variable.

Assume for the moment that we the family (U(t))t∈ℝ is a family of bounded operators on an Hilbert space
H (giving a representation of ℝ on H).

For any unit vector v∈H we can form the function 𝜑v(t)=⟨v,U(t)v⟩, it is easy to show that 𝜑v(0)=1, and
𝜑v is positive definite, i.e.

�
i, j

𝜆̄i𝜆j𝜑v(tj − ti)⩾0 (𝜆i)i ⊆ℂ,(ti)i ⊆ℝ.

This are the same properties of the characteristic function of a measure, so we want to show that there exist
a measure 𝜇v on ℝ so that

𝜑v(t)=�
ℝ

e itx𝜇v(dx), t ∈ℝ.

This is essentially Bochner's theorem (given some continuity of 𝜑v), but are going to sketch a proof because
will give us a simple example of more involved reconstruction we encouter later on.

A Radon measure on ℝ is just a positive functional on C0(ℝ) (Riesz–Markov–Kakutani).

Let f ∈𝒮(ℝ) a Schwartz function and define

Tf ≔�
ℝ

U(t) f̂ (t)dt

where f̂ is the Fourier transform of f . In order for this definition to make sense I need some condition on
the family (U(t))t∈ℝ to be able to integrate it. Is easy to check in simple cases that (U(t))t∈ℝ is essentially
never continuous in the operator norm.

Indeed usually ‖U(t)−U(s)‖=2 for t ≠ s, think about V(s) f (x)= f (x − s) or U(t) f (x)=e2𝜋ixf (x).

So the integral cannot be defined as Bochner integral. But it is reasonable to ask for weak measurability,
in the sense that for any v∈H we want 𝜑v(t) to be measurable in t, by polarization this indeed implies that
⟨v,U(t)w⟩ is measureable for any v,w∈H. (Note indeed that ⟨v,U(t)w⟩=∑i=1

4 𝜆i⟨hi,U(t)hi⟩ for some four
well chosen vectors hi). So we can define ⟨v,Tfv⟩≔∫ℝ 𝜑v(t) f̂ (t)dt and polarization define the operator Tf .
Note that it is a bounded operator because

|⟨v,Tfv⟩|⩽�
ℝ

|𝜑v(t)| | f̂ (t)|dt ⩽‖v‖2�
ℝ

| f̂ (t)|dt ⩽Cf ‖v‖2
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for all f ∈𝒮(ℝ) and for all f ∈ℱL1={ f ∈C(ℝ): ‖ f̂ ‖L1 <∞}. This define a linear functional ℓv on 𝒮(ℝ)
such that

|ℓv( f )|⩽Cv‖ f̂ ‖L1.

In order to extend this functional to all C0(ℝ) I need to show that |ℓv( f )|≲‖ f ‖∞ for f ∈𝒮(ℝ). In order to
do this one has to use that ℓv is positive, that is if f =g2>0 then provided g∈𝒮(ℝ) we have

ℓv( f )=ℓv(g2)⩾0

because we use that

�
ℝ

𝜑v(t) f̂ (t)dt =�
ℝ

�
ℝ

𝜑v(t + s)ĝ(t)ĝ(s)dtds⩾0.

because we can approximate the two integrals by finite sums and use the positive definiteness of 𝜑v. Then
one argue by approximation that for any f ∈𝒮(ℝ) one has ‖ f ‖∞− f =h⩾0 and this can be approximated by
h𝜀 in 𝒮(ℝ) to get that ℓv(h)⩾0 and this will imply that ℓv( f )⩽‖ f ‖∞ and the the functional can be extended
to all C0(ℝ) by approximation. To make rigorous this argument one need that 𝜑v is continuous in t.

As soon as we have extended ℓv continously we can define a ∗-representation Q of C0(ℝ) on ℒ(H). For
any f ∈C0(ℝ) define the operator Q( f ) by the relation ⟨v,Q( f )v⟩=ℓv( f ) and its polarization. This define a
bounded operator such that ‖Q( f )‖ℒ(H)⩽‖ f ‖∞ and Q( f )∗=Q( f̄ ) and Q is linear in f and Q( f )Q(g)=Q( fg)
(by continuity is enough to check there relations of f ∈ 𝒮(ℝ) and this case we have the more precise
relation

Q( f )=�
ℝ

U(t) f̂ (t)dt

(remember that the r.h.s is defined as a weak integral). I would like to use f (x) = e isx, in order to do this
observe that for any v∈H

⟨v,Q( f )v⟩=�
ℝ

𝜑v(t) f̂ (t)dt,

looking at this formula is clear that if fn → f in such a way that the r.h.s. converges, so we can take
fn(x)=e isxe−x 2/(2n) so that

⟨v,Q( fn)v⟩=�
ℝ

𝜑v(t) fn̂(t)dt =(2𝜋n−1)−1/2�
ℝ

𝜑v(t)e−n(t−s)2/2dt →𝜑𝜈(s)

by continuity of 𝜑𝜈. So this suggest that we can define Q(e is⋅)=U(s). In order for this to make full sense we
need to extend Q to all continuous bounded functions. Short way to do this is to realise that ℓv corresponds
to a measure 𝜇v By Riesz-Markov and then just extend it using measure theory. In this case actually you
can extend it to all bounded measurable functions on ℝ.

Note also that if fn↑ f then the sequence (⟨v,Q( fn)v⟩)n is monotone increasing since if f ⩾0 then ⟨v,Q( f )v⟩⩾
0 so we can extend Q to all Cb(ℝ). To check that the extension is unique the following argument works.

Take now the family (hn(x)=exp(−nx2))n then by continuity of 𝜑v it is easy to prove that

Q(hn)→1ℒ(H).

Observe that if f ∈Cb(ℝ) then hnf ∈C0(ℝ) and it follows that for any extension Q′ of Q to Cb(ℝ) we have

Q′(hn)Q′( f )=Q′(hnf )=Q(hnf )=Q(hn)Q( f )

and taking limits we have Q′( f )=Q( f ).
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So today we proved that for any weakly-continuous one-parameter unitary group in ℒ(H) we can construct
a representation Q of the C∗-algebra Cb(ℝ) on ℒ(H). It is suggestive to write f (Q) = Q( f ) and think to
f (Q) as a function computed on an operator Q in such a way that the formula

U(t)=exp(itQ)

has now a sense. We could of course associate to Q an unbounded linear operator Q̂ on a dense domain
within H in such a way that by Stone theorem Q̂ is the generator of the group (U(t))t∈ℝ.

From the operational point of view such an homomorphism Q represent an observable in the sense that we
can measure its expectation value on any state 𝜔 and also we can see it as a random variable with a law
given by the linear functional

f ↦𝜔( f (Q)).

If we go back to the Weyl relation we now understand that they describe two observables P,Q which satisfy
the commutation relations

exp(itQ)exp(isP)=exp(2𝜋ist)exp(isP)exp(itQ).

Combining unbouded operators is a task of the same difficulty of combining two homomorphism or two
unitary representations of ℝ.

There is no simple way to understand, for example, the sum P+Q.

Tentantively in this course we take the attitude that an observable is really a *-homomorphism of Cb(ℝ)
into either some abstract C∗-algebra or into a C∗-algebra of operators. This extends to the non-commuta-
tive/quantum context the probabilistic notion of real random variable.

This is coherent with our modelisation which sees observables as self-adoint elements of a C∗-algebra in
that if f :ℝ→ℝ then f (Q) is a self-adjoint operator.

The reason to use this different notion is that it can accomodate the case where we have dealing with
“unbounded” obserables. Think for example to a Gaussian random variable X. A Gaussian random variable
is not an element of a C∗-algebra since X can take arbitrarily large values. However if we look at X has a
∗-homomorphism by letting X( f )≔ f (X) for any f ∈C(ℝ) then X is a well defined observable. In this case
it has a concrete realisation on L2(ℙ) and if we take v(𝜔)=1 we have that

⟨v,X( f )v⟩=𝔼[ f (X)].
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