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Canonical commutation relations / Quantum particle kinematics.

Recall. Canonical commutation relations (Weyl form)
Um)V(s)=V(s)U(t)exp(ist), s,teR. (1)
Where U, V are two unitary representations of the additive group of the reals, i.e.
UnU(s)=U(t+s), U =U(-1),
and similarly for V. We can form the Weyl operators (W(z)),cc defined forz=a +ig € C as
W(a+if)= e71aPBI21aQpifP

One can check that W(z) is unitary for any z € C and that

WWE)=e™W(z+2),  z7eC @)

where (z,z") =7z’ is the Hermitian scalar product of C (a one dimesional complex Hilbert space).

Remark 1. All we are saying generalises easily to (W(z)),ex for finite dimensional Hilbert spaces K and
strongly continuous unitary operators (W(z)).cx such that (2) is satisfied.

» Schridinger representation. This is given on H =L*(R) by taking
U fx)=e™f(x), V()fx)=fx-s), feHtseR.

Is this irreducible? If it is not irreducible then there exists two unit vectors f, g € L>(R) such that for all 7,
seR

0=(f.UMNV(s)g) = fR Fx)e™g(x—s)dx.

But then if this is true for any ¢ we have that (by Fourier transform) |f (x)g (x—s)| =0 for almost every s and
X, by squaring and integrating in x, s we have

0= [ dx[ dslf(x)g0e=)P =71 IghE-= 1

so we have a contradiction and this proves that the Schrodinger representation is irreducible.

Therefore there must exist a vector yy < L2(R) such that
(wo, e ™2U (1) V (s)wo) =exp(—%(s2+ tz)), s,teR

and by taking s =0 we have

2
[ wotPeiax= exp(—%)



which means that |n//0()c)|2 is a Gaussian function (actually the density of a #"(0,1/2) random variable),
namely
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Iyo ()P = —ze™

this determines yq up to a phase factor: yy(x) = e e™"/2. However
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Bkl I —its/2 _ -its)2 f it —if 1?2 ifms_ 1 -2
exp( 7 )—(y/o,e UV(s)yo) =e dxe™e (n)1/4e e (7r)”4€

—tts/2

— l/zfdxezt(x+s/2 —zf(x+3/2) —(x+5/2) /2 if (x— 5/2) —(x=5/2)2/2
(o

e 2/4

=( 1/2Idxe eztxez(f(x s/2)—f(x+s/2))

so we have

2
f dxeitxei(f(x—S/Z)—f(X+s/2))e—xz=exp(_t_)

e 1

Now is better because this is saying that the function

( )1/2ei(.f(x—s/Z)—.f(xﬂ/Z)>e—x2
a

is the density of a Gaussian /4" (0,1/2) so it is equal to
proven that, in the Schrodinger representation we have

= ),/,e - and we conclude that f=0, so we have

» Gaussian representation. We can introduce the unitary transformation (ground state transformation)

J:LA(R) - L*(y)
where 7y is the Gaussian measure with mean zero and variance 1/2 by letting

) () =y (x)/yo(x), xeR.
Then we have the images U’, V' of the Weyl pair U, V given by (for f € L*(y))
U’ (1) f () = (JU@Tf) (x) =yo(x)" U (0) (yof) (x) =™ (x)
V($)f(x) = TV ()I) (x) = o)™V (8) (wof ) (X) = wo(x) " 'wo(x—s)f(x—s)
=e“"’2/2f(x -s)

One can check directly that this gives indeed a strongly continuous representation of the Weyl relation on
Lz(y). This is called the Gaussian representation and is useful because there is a nice basis for Lz(y) given
by polynomial functions, the Hermite basis (/,(x)),>o (indeed note that polynomials are in L2( y) and that

one can perform a Gram-Schmidt ortogonalisation procedure of the family (x"),o which is a separating
family for L2(y) by Stone-Weierstrass) and every %,(x) has monomial of highest degree n.



» Reducible (regular) representations of Weyl relations.

Assume now that (W(z)).ec does not act irreducibly on H then the range of P is not one dimensional.
However in general we have that for any y,p € H

(W(@)Po,W(Z")Py)= (9, PW(2)*W(Z")Py) = f(2,2') (P, Py)
where we used that there exists a function f such that f(z,z")P=PW(z)*W(z")P and that does not depend
on the specific representation. This means that I can compute it in any representation, in particular if we

denote 1//(? the vacuum vector of the Schrodinger representation and by (W#(z)).cc the Weyl operators in
the Schrodinger representation we have (W(f,P” Wﬁ(Z)*Wﬁ(Z,)P#lﬂg)Lz(R) =f(z,z') and

(W(2)Pp,W (' )Py)n= (W#(Z)P# lllg, W#(Z,)Pﬁl//g)Lz(R)(P(P,Pl//)1m<P> 3)
therefore we can introduce a unitary operator J: L*(R) ® Im(P) - H defined by

J(WH 2w ® Pp) =W (z)Pgp.

Remark 2. Let us recall that if K, K, are two Hilbert spaces there is a canonical notion of product of
them, which is the Hilbert space K| ® K, obtained by completing the span of all the monomials of the form
{vew:veK,,we K,} with respect to the Hermitian scalar product define on monomials by

(VI® W, V2 ®@Wo)k ek, = (V1,V2) K, (W1, W2) ks

and extended by linearity (one has to check that this is a positive definite quantity, but for general results
the product of positive definite kernels is a positive definite kernel).

Since {Wﬁ(Z)l//(? }.ec span a dense subset of L*(R) (by irreducibility of the Schrodinger rep.) and {P¢}ycn=
Im(P) as Hilbert space, then J is well defined on all L*(R) @ Im(P) and by construction it is isometric
on H by (3). It remains to check that it is surjective. Let ¢ ¢ Im(J) then we must have for any vector
of the form W (z) PW(-z)y since these are surely in the image of J, so for any z € C and y € H we have

0=, J(WH2)y{ @ PW(=2)y)) = (0, W(2) PW (=2)y)

recalling the definition of P we have
0= ™ /4@, W)W (w) W(=2)y)dwdib = [ e (o, W (1)) dwdiv

since this has to be zero for any z € C we deduce by Fourier transform that (¢, W(w)y ) =0 for a.e. w but is
also continuous in w so it is zero for all w € C and then also for any w € H. By taking w=0 and y = ¢ we
deduce that ||¢]|=0 so ¢ =0. In this way we proved that J is surjective and therefore that it is unitary.

Corollary 3. Any regular representation ((W(z)),ec,H) of the Weyl relations is unitarily equivalent
to the representation ((W#(z))zec,Lz(R) ® K) where K =PH and W*(2) acts trivially on K and as the
Schrodinger representation on L*(R), i.e.

Wi (wieyh=WiyhHey® zeC,yfel*R),yek.



Next time I will continue to discuss the Weyl relation: other ways to consrtuct reducible representations and
Fock representation, dynamics: free particle and harmonic oscillator.



