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Canonical commutation relations / Quantum particle kinematics.

Recall. Canonical commutation relations (Weyl form)

U(t)V(s)=V(s)U(t)exp(ist), s, t ∈ℝ. (1)

Where U,V are two unitary representations of the additive group of the reals, i.e.

U(t)U(s)=U(t + s), U(t)∗=U(−t),

and similarly for V . We can form the Weyl operators (W(z))z∈ℂ defined for z =𝛼+ i𝛽∈ℂ as

W(𝛼+ i𝛽)=e−i𝛼𝛽/2e i𝛼Qe i𝛽P.

One can check that W(z) is unitary for any z ∈ℂ and that

W(z)W(z′)=e iIm⟨z,z′⟩W(z + z′), z, z′∈ℂ (2)

where ⟨z, z′⟩= z̄z′ is the Hermitian scalar product of ℂ (a one dimesional complex Hilbert space).

Remark 1. All we are saying generalises easily to (W(z))z∈K for finite dimensional Hilbert spaces K and
strongly continuous unitary operators (W(z))z∈K such that (2) is satisfied.

� Schrödinger representation. This is given on H =L2(ℝ) by taking

U(t) f (x)=e itxf (x), V(s) f (x)= f (x − s), f ∈H, t, s∈ℝ.

Is this irreducible? If it is not irreducible then there exists two unit vectors f ,g∈L2(ℝ) such that for all t,
s∈ℝ

0=⟨ f ,U(t)V(s)g⟩=�
ℝ

f̄ (x)e itxg(x − s)dx.

But then if this is true for any t we have that (by Fourier transform) | f̄ (x)g(x − s)|=0 for almost every s and
x, by squaring and integrating in x, s we have

0=� dx� ds| f̄ (x)g(x − s)|2 =‖ f ‖L2
2 ‖g‖L2

2 =1

so we have a contradiction and this proves that the Schrödinger representation is irreducible.

Therefore there must exist a vector 𝜓0 ∈L2(ℝ) such that

⟨𝜓0,e−its/2U(t)V(s)𝜓0⟩=exp�−1
4(s2+ t2)�, s, t ∈ℝ

and by taking s=0 we have

� |𝜓0(x)|2e itxdx =exp((((((((((− t2

4 ))))))))))
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which means that |𝜓0(x)|2 is a Gaussian function (actually the density of a 𝒩(0, 1/2) random variable),
namely

|𝜓0(x)|2= 1
(𝜋)1/2e−x 2

this determines 𝜓0 up to a phase factor: 𝜓0(x)=e if (x) 1
(𝜋)1/4e−x 2/2. However

exp((((((((((−s2+ t2

4 ))))))))))=⟨𝜓0,e−its/2U(t)V(s)𝜓0⟩=e−its/2� dxe itx e−if (x) 1
(𝜋)1/4e−x 2/2e if (x−s) 1

(𝜋)1/4e−(x−s)2/2

= e−its/2

(𝜋)1/2� dxe it (x+s/2)e−if (x+s/2)e−(x+s/2)2/2e if (x−s/2)e−(x−s/2)2/2

= e−s2/4

(𝜋)1/2� dxe−x 2e itxe i( f (x−s/2)− f (x+s/2))

so we have

1
(𝜋)1/2� dxe itxe i( f (x−s/2)− f (x+s/2))e−x 2 =exp((((((((((− t2

4 ))))))))))
Now is better because this is saying that the function

1
(𝜋)1/2e i( f (x−s/2)− f (x+s/2))e−x 2

is the density of a Gaussian 𝒩(0, 1/2) so it is equal to 1
(𝜋)1/2e−x 2 and we conclude that f = 0, so we have

proven that, in the Schrödinger representation we have

𝜓0(x)= e−x 2/2

𝜋1/4 .

� Gaussian representation. We can introduce the unitary transformation (ground state transformation)

J:L2(ℝ)→L2(γ)

where γ is the Gaussian measure with mean zero and variance 1/2 by letting

(J𝜓)(x)=𝜓(x)/𝜓0(x), x ∈ℝ.

Then we have the images U′,V ′ of the Weyl pair U,V given by (for f ∈L2(𝛾))

U ′(t) f (x)=(JU(t)J−1f )(x)=𝜓0(x)−1 U(t)(𝜓0 f )(x)=e itxf (x)

V ′(s) f (x)=(JV(s)J−1f )(x)=𝜓0(x)−1 V(s)(𝜓0 f )(x)=𝜓0(x)−1𝜓0(x − s) f (x − s)

=exs−s2/2 f (x − s)

One can check directly that this gives indeed a strongly continuous representation of the Weyl relation on
L2(γ). This is called the Gaussian representation and is useful because there is a nice basis for L2(γ) given
by polynomial functions, the Hermite basis (hn(x))n⩾0 (indeed note that polynomials are in L2(𝛾) and that
one can perform a Gram-Schmidt ortogonalisation procedure of the family (xn)n⩾0 which is a separating
family for L2(𝛾) by Stone-Weierstrass) and every hn(x) has monomial of highest degree n.
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� Reducible (regular) representations of Weyl relations.

Assume now that (W(z))z∈ℂ does not act irreducibly on H then the range of P is not one dimensional.
However in general we have that for any 𝜓,𝜑∈H

⟨W(z)P𝜑,W(z′)P𝜓⟩=⟨𝜑,PW(z)∗W(z′)P𝜓⟩= f (z, z′)⟨P𝜑,P𝜓⟩

where we used that there exists a function f such that f (z, z′)P=PW(z)∗W(z′)P and that does not depend
on the specific representation. This means that I can compute it in any representation, in particular if we
denote 𝜓0

♯ the vacuum vector of the Schrödinger representation and by (W ♯(z))z∈ℂ the Weyl operators in
the Schrödinger representation we have �𝜓0

♯,P♯ W ♯(z)∗W ♯(z′)P♯𝜓0
♯�L2(ℝ)= f (z, z′) and

⟨W(z)P𝜑,W(z′)P𝜓⟩H =�W ♯(z)P♯ 𝜓0
♯,W ♯(z′)P♯𝜓0

♯�L2(ℝ)⟨P𝜑,P𝜓⟩Im(P) (3)

therefore we can introduce a unitary operator J:L2(ℝ)⊗Im(P)→H defined by

J�W ♯(z)𝜓0
♯ ⊗P𝜑�=W(z)P𝜑.

Remark 2. Let us recall that if K1, K2 are two Hilbert spaces there is a canonical notion of product of
them, which is the Hilbert space K1⊗K2 obtained by completing the span of all the monomials of the form
{v⊗w:v∈K1,w∈K2} with respect to the Hermitian scalar product define on monomials by

⟨v1⊗w1,v2⊗w2⟩K1⊗K2 ≔⟨v1,v2⟩K1⟨w1,w2⟩K2,

and extended by linearity (one has to check that this is a positive definite quantity, but for general results
the product of positive definite kernels is a positive definite kernel).

Since �W ♯(z)𝜓0
♯�z∈ℂ span a dense subset of L2(ℝ) (by irreducibility of the Schrödinger rep.) and {P𝜑}𝜑∈H =

Im(P) as Hilbert space, then J is well defined on all L2(ℝ) ⊗ Im(P) and by construction it is isometric
on H by (3). It remains to check that it is surjective. Let 𝜑 ∈ Im(J) then we must have for any vector
of the form W(z)PW(−z)𝜓 since these are surely in the image of J, so for any z ∈ℂ and 𝜓∈H we have

0=�𝜑, J�W ♯(z)𝜓0
♯ ⊗PW(−z)𝜓��=⟨𝜑,W(z)PW(−z)𝜓⟩

recalling the definition of P we have

0=�
ℂ

e−|w|2/4⟨𝜑,W(z)W(w)W(−z)𝜓⟩dwdw̄=�
ℂ

e−|w|2/4e−2Im⟨z,w⟩⟨𝜑,W(w)𝜓⟩dwdw̄

since this has to be zero for any z∈ℂ we deduce by Fourier transform that ⟨𝜑,W(w)𝜓⟩=0 for a.e. w but is
also continuous in w so it is zero for all w∈ℂ and then also for any 𝜓∈H. By taking w=0 and 𝜓=𝜑 we
deduce that ‖𝜑‖=0 so 𝜑=0. In this way we proved that J is surjective and therefore that it is unitary.

Corollary 3. Any regular representation ((W(z))z∈ℂ, H) of the Weyl relations is unitarily equivalent
to the representation ((W ♯(z))z∈ℂ, L2(ℝ) ⊗ K) where K = PH and W ♯(z) acts trivially on K and as the
Schrödinger representation on L2(ℝ), i.e.

W ♯(z)(𝜓♯ ⊗𝜓♮)=(W ♯(z)𝜓♯)⊗𝜓♮, z ∈ℂ,𝜓♯ ∈L2(ℝ),𝜓♮∈K.
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Next time I will continue to discuss the Weyl relation: other ways to consrtuct reducible representations and
Fock representation, dynamics: free particle and harmonic oscillator.
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