

Lecture 17 – 2020.6.16 – 14:15 via Zoom – F. de Vecchi

(Script by M. Gubinelli of the lecture of Francesco.)

Commutative setting: representation  $Q_0$  of an abelian  $C^*$  algebra  $\mathcal{A}$  on an Hilbert space  $\mathcal{A}$ .

$$\mathcal{A} = C_b^0(\mathbb{R}^n, \mathbb{C}), \qquad \mathcal{H} = L^2(\mathbb{R}^n, \mathbb{C})$$

$$a(x) \in \mathcal{A}, \qquad h(x) \in \mathcal{H}$$

$$Q_0(a)h = a(x)h(x)$$

$$Q_0(e^{iax})h = e^{iax}h(x)$$

Norm on  $\mathcal{A}$  is the uniform norm on  $C_h^0(\mathbb{R}^n,\mathbb{C})$ . This representation is faithful  $\ker(Q_0) = 0$ .

Suppose that we have a cyclic vector  $h_0 \in \mathcal{H}$ .

$$\mathcal{H}_0 = \{Q_0(a)h_0, a \in \mathcal{A}\}, \quad \overline{\mathcal{H}_0} = \mathcal{H}.$$

**Theorem 1.** Under the hypothesis  $\overline{\mathcal{H}}_0 = \mathcal{H}$  the system  $(\mathcal{H}, \mathcal{A}, Q_0)$  is isomorphic to  $(L^2(X, \mathbb{C}, \mu), C^0_\infty(X, \mathbb{C}), m)$  where X is a locally compact Hausdorff space,  $\mu$  is a measure on X and  $C^0_\infty$  is the set of continuous functions going to zero at infinity and m is the multiplication operator.

**Proof.** By Gelfand–Naimark  $\mathcal{A} \approx C_{\infty}^0(X, \mathbb{C})$  where X is the space of characters (i.e. pure, positive states on  $\mathcal{A}$ ) equipped with the weak-\* topology.

**Remark 2.** In the case where  $1 \in \mathcal{A}$  then X is compact, so  $\mathscr{C}^0_{\infty}(X) = \mathscr{C}^0(X)$ .

We can take  $\mathscr{H}=\mathscr{H}^{GNS}$  where the state generating the GNS construction is  $\omega^{h_0}(a)=\langle h_0,Q_0(a)h_0\rangle$ . Here  $\omega^{h_0}$  is a positive functional on  $\mathscr{A}$ .  $\omega^{h_0}$  is continuous wrt. the  $\|\cdot\|_{\infty}$  norm where we identify  $\mathscr{A}\approx C^0_{\infty}(X,\mathbb{C})$ . So  $\omega^{h_0}$  defines a measure on X since is in  $(C^0_{\infty}(X,\mathbb{C}))^*$  (the dual space, i.e. the space of bounded measures). Moreover it is a non-negative measure. We call it  $\mu$  and have that

$$\mathcal{H}^{\text{GNS}} \to L^2(X, \mu)$$

$$U(Q_0(a)h_0) = a(x) \in L^2(X, \mu)$$

This is an isomorphism where  $Q_0$  corresponds to the multiplication m.

Let us note that we have that  $\mathbb{R}^n \hookrightarrow X$  and actually X is a compactification of  $\mathbb{R}^n$  which we are not able to work with explicitly.

## **Dynamics**

 $(\mathcal{H}, \tilde{\mathcal{A}}, \tilde{Q}_0)$  where  $\tilde{\mathcal{A}}$  is a general  $C^*$ -algebra and  $\tilde{Q}_0$  is a representation in  $\mathcal{H}$ .

**Definition 3.** Let  $(\alpha_t)_{t\in\mathbb{R}}$  a set of  $C^*$ -automorphisms of  $\tilde{\mathcal{A}}$ . We call  $\alpha$  a regular dynamics, if

- *i.*  $(\alpha_t)_{t\in\mathbb{R}}$  is a group wrt. t, i.e.  $\alpha_0 = \operatorname{id}$  and  $\alpha_t \circ \alpha_s = \alpha_{t+s}$  for any  $t, s \in \mathbb{R}$
- ii. the map  $t \mapsto \alpha_t$  is weakly continuous, i.e. for any state  $\omega$  and for any  $a \in \tilde{\mathcal{A}}$  the map  $t \mapsto \omega(\alpha_t(a))$  is continuous.

Define  $\tilde{Q}_t(a) := \tilde{Q}(\alpha_t(a))$  for  $a \in \tilde{\mathcal{A}}$ 

**Definition 4.** The set  $\{U(t)\}_{t\in\mathbb{R}}\subset\mathcal{B}(\mathcal{H})$  is a unitary group of strongly continuous operators, if U(t)U(s)=U(t+s) and  $U(t)^*=U(-t)$  and if the map  $t\mapsto U(t)$  is weakly (and thus strongly) continuous.

**Theorem 5.** Assume that there exists a state  $\omega^{h_0}(\alpha_t(a)) = \omega^{h_0}(a)$  for all  $t \in \mathbb{R}$  and  $a \in \tilde{\mathcal{A}}$  and  $(\alpha_t)_t$  is a regular dynamics of  $\tilde{\mathcal{A}}$ , then if  $\mathcal{Y}$  is the GNS representation space associated with  $\omega^{h_0}$  and  $h_0 \in \mathcal{Y}$  is the corresponding cyclic vector, then there exists a unitary strongly continuous group  $(U(t))_{t \in \mathbb{R}}$  on  $\mathcal{Y}$  such that

$$\tilde{Q}_t(\cdot) = U(t)\tilde{Q}_0(\cdot)U(-t)$$

and also  $U(t)h_0 = h_0$ .

**Lemma 6.** Suppose that we have a contraction V(t), i.e.  $||V(t)h|| \le ||h||$ , such that V(0) = 1 and V(t) is weakly continuous in t at zero, then it is strongly continuous at zero.

Proof. We have

$$0 \le \|V(t)h - h\|_{\mathcal{H}}^2 = \|V(t)h\|_{\mathcal{H}}^2 + \|h\|_{\mathcal{H}}^2 - 2\operatorname{Re}\langle V(t)h, h\rangle_{\mathcal{H}} \le 2\|h\|_{\mathcal{H}}^2 - 2\operatorname{Re}\langle V(t)h, h\rangle_{\mathcal{H}}$$

so weak continuity at zero is enough for strong continuity at zero.

**Proof.** (of the Theorem 5)

$$\mathcal{H}_0 = \{\widetilde{Q}_0(a)h_0|a \in \widetilde{\mathcal{A}}\}, \qquad \overline{\mathcal{H}_0} = \mathcal{H},$$

Let's define

$$U_0(t)(\widetilde{Q}_0(a)h_0) = \widetilde{Q}_t(a)h_0 = \widetilde{Q}_0(\alpha_t(a))h_0$$

We first prove that  $U_0(t)$  is an isometry

$$\begin{split} \langle U_0(t)(\widetilde{Q}_0(a_1)h_0), U_0(t)(\widetilde{Q}_0(a_2)h_0) \rangle &= \langle \widetilde{Q}_0(\alpha_t(a_1))h_0, \widetilde{Q}_0(\alpha_t(a_2))h_0 \rangle \\ \\ &= \langle h_0, \widetilde{Q}_0(\alpha_t(a_1))^* \widetilde{Q}_0(\alpha_t(a_2))h_0 \rangle = \langle h_0, \widetilde{Q}_0(\alpha_t(a_1^*a_2))h_0 \rangle = \omega^{h_0}(\alpha_t(a_1^*a_2)) \\ \\ &= \omega^{h_0}(a_1^*a_2) = \langle h_0, \widetilde{Q}_0(a_1^*a_2)h_0 \rangle = \langle \widetilde{Q}_0(a_1)h_0h_0, \widetilde{Q}_0(a_2)h_0 \rangle \end{split}$$

So  $U_0(t)$  is an isometry on  $\mathcal{H}_0$  so it is bounded on  $\mathcal{H}_0$  and can be extended by continuity to  $\overline{\mathcal{H}_0} = \mathcal{H}$ . It remains to prove that it form a group.  $\alpha_0 = 1 \Rightarrow U_0(0) = I_{\mathcal{H}}$  and

$$U_0(t)U_0(s)(\widetilde{Q}_0(a)h_0) = U_0(t)(\widetilde{Q}_0(\alpha_s(a))h_0) = (\widetilde{Q}_0(\alpha_t(\alpha_s(a)))h_0) = (\widetilde{Q}_0(\alpha_{t+s}(a))h_0) = U_0(t+s)(\widetilde{Q}_0(a)h_0)$$

so  $U_0(t)U_0(s) = U_0(t+s)$  on  $\mathcal{H}_0$  and therefore on all  $\mathcal{H}$ . It remains to prove that  $h_0$  is invariant, but of course  $U_0(t)h_0 = U_0(t)(\widetilde{Q}_0(1)h_0) = \widetilde{Q}_0(\alpha_t(1))h_0 = h_0$ . We also have that it is weakly continuous

$$\langle (\widetilde{Q}_0(a)h_0), U_0(t)(\widetilde{Q}_0(b)h_0) \rangle = \langle h_0, \widetilde{Q}_0(a^*\alpha_t(b))h_0 \rangle = \omega^{h_0}(a^*\alpha_t(b))$$

and  $\omega^{h_0}(a^*\cdot)$  is a continuous functional on  $\mathscr{A}$  and therefore  $t\mapsto \omega^{h_0}(a^*\alpha_t(b))$  is continuous, which proves that  $U_0(t)$  is weaky continuous in  $\mathscr{H}_0$  and then strongly continuous and can be extended as a strongly continuous group in  $\mathscr{H}$ . Note finally that

$$\widetilde{Q}_t(a)\widetilde{Q}_0(b)h_0 = \widetilde{Q}_t(a\alpha_{-t}(b))h_0 = U_0(t)(\widetilde{Q}_0(a\alpha_{-t}(b))h_0) = U_0(t)(\widetilde{Q}_0(a)\widetilde{Q}_0(\alpha_{-t}(b))h_0)$$

$$= U_0(t)\widetilde{Q}_0(a)U_0(-t)\widetilde{Q}_0(b)h_0$$

so this proves that  $\widetilde{Q}_t(a) = U_0(t)\widetilde{Q}_0(a)U_0(-t)$ .

Without the hypothesis that the state is invariant, then this construction is not true in general anymore. Take for example  $\mathscr{A}$  commutative, i..e  $C^0_\infty(\mathbb{R}^2)$  and consider an Hilbert space  $L^2(\mathbb{R}^2, \mu)$  where

$$\mu(\mathrm{d}x) = e^{-x^2/2} \mathrm{d}x + \delta_0(\mathrm{d}x)$$

and the usual moltiplication and take  $\alpha_t(f(x)) = f(x-t)$ . But here there is no unitary group associated to  $\alpha$ . Indeed take the state  $\omega^{\mu}(a) = \int a(x) \mu(\mathrm{d}x)$ . Consider the translated state  $\omega^{\mu}(\alpha_t(\cdot))$ , then GNS representation of it lives on  $L^2(\mathbb{R}^n, \mu_t)$  where  $\mu_t = T_t^* \mu$  the pull forward of  $\mu$  by the translation operator. In order to have a unitary transformation we need that  $\mu_t$  has to be absolutely continuous wrt.  $\mu$ , but this is not the case.

In this lectures we will request always to have a unitary implementation of the dynamics  $(\alpha_t)_{t\in\mathbb{R}}$  for  $(\mathcal{H}, Q_0)$ , i.e. to have a strongly continuous group of unitary operators  $(U(t))_{t\in\mathbb{R}}$  so that  $Q_t(\cdot) = Q_0(\alpha_t(\cdot)) = U(t)Q_0(\cdot)U(-t)$ .

**Theorem 7.** Consider an Hilbert space  $\mathcal{H}$ , a strongly continuous unitary group  $(U(t))_{t\in\mathbb{R}}$  on  $\mathcal{H}$ , then there exists a unique  $C^*$ -representation X of  $C_b^0(\mathbb{R},\mathbb{C})$  on  $\mathcal{H}$  such that

i. 
$$X(e^{it \cdot}) = U(t)$$

ii. If  $f_n \to f$  pointwise and  $\sup_n ||f_n|| < \infty$  then  $X(f_n) \to X(f)$  weakly.

This was proven in one of the last lectures.

**Definition 8.**  $\{K(t)\}_{t\in\mathbb{R}_+}\subseteq \mathcal{B}(\mathcal{H})$ . We say that K(t) is a strongly continuous semigroup of self-adjoint contractions if

i. 
$$K(0) = 1$$
,  $K(t)K(s) = K(t+s)$ , for  $t, s \ge 0$ .

*ii.* 
$$K(t) = K(t)^*$$
,

iii.  $t \mapsto K(t)$  is strongly continuous

*iv.* 
$$||K(t)h|| \le ||h||, t \ge 0.$$

Next lecture we will prove the following theorem:

**Theorem 9.** Assume that K is a strongly continuous semigroup of self-adjoint contractions then there exists a unique representation X of  $C_b^0(\mathbb{R}_+)$  on  $\mathcal{H}$  such that

$$i. \ X(e^{-t}) = K(t)$$

ii. If  $f_n \to f$  pointwise and  $\sup_n ||f_n|| < \infty$  then  $X(f_n) \to X(f)$  weakly.