

Lecture 18 – 2020.6.17 – 8:30 via Zoom – F. de Vecchi

(Script by M. Gubinelli of the lecture of Francesco.)

Definition 1. $\{K(t)\}_{t\in\mathbb{R}_+}\subseteq \mathcal{B}(\mathcal{H})$. We say that K(t) is a strongly continuous semigroup of self-adjoint contractions if

- i. $K(t) = K(t)^*$, K(0) = 1, K(t)K(s) = K(t+s), for $t, s \ge 0$.
- ii. $t \mapsto K(t)$ is strongly continuous
- *iii.* $||K(t)h|| \le ||h||, t \ge 0$.

We want to prove now that

Theorem 2. Assume that K is a strongly continuous semigroup of self-adjoint contractions then there exists a unique *-representation X of $C_b^0(\mathbb{R}_+,\mathbb{C})$ on \mathcal{H} such that

- i. $X(e^{-t}) = K(t)$
- ii. If $f_n \to f$ pointwise and $\sup_n ||f_n|| < \infty$ then $X(f_n) \to X(f)$ weakly.

Definition 3. If $G: \mathbb{R} \to \mathbb{C}$ we call G positive definite if for any $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$ and $t_1, \ldots, t_k \in \mathbb{R}$ we have

$$\sum_{i,j=1}^{k} \lambda_i \bar{\lambda}_j G(t_i - t_j) \geqslant 0$$

Definition 4. We say that $F: \mathbb{R}_+ \to \mathbb{C}$ is totally monotone if for any $\lambda_1, ..., \lambda_k \in \mathbb{C}$ and $t_1, ..., t_k \in \mathbb{R}_+$ we have

$$\sum_{i,j=1}^k \lambda_i \bar{\lambda}_j F(t_i + t_j) \geqslant 0.$$

Take U a unitary group on \mathcal{H} . For any $h \in \mathcal{H}$ we define $F_U(t,h) = \langle U(t)h,h \rangle$. If K is a self-adjoint contration semigroup we define $F_K(t,h) = \langle K(t)h,h \rangle$.

Theorem 5. Let U and K as before, then F_U is positive definite and F_K is totally monotone.

Proof. Consider K, the case of U is similar. Take $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$ and $t_1, \ldots, t_k \in \mathbb{R}_+$ and just compute

$$0 \leq \left\langle \sum_{i} \lambda_{i} K(t_{i}) h, \sum_{i} \lambda_{i} K(t_{i}) h \right\rangle = \sum_{i,j=1}^{k} \lambda_{i} \bar{\lambda}_{j} F_{K}(t_{i} + t_{j})$$

using the fact that *K* is self-adjoint and a semigroup.

Theorem 6. (Bochner) G is a continuous positive definite function iff there exists a bounded positive measure μ on \mathbb{R} such that

$$G(t) = \int_{\mathbb{R}} e^{itx} \mu(\mathrm{d}x).$$

Theorem 7. (Bernstein) F is a bounded totally monotone function iff there exists a bounded positive measure μ on \mathbb{R}_+ and a constant $C \geqslant 0$ such that

$$F(t) = C \int_{\mathbb{R}_+} e^{-tx} \mu(\mathrm{d}x).$$

Remark 8. These results can be generalises in a more abstract setting by replacing \mathbb{R} and \mathbb{R}_+ with other topological groups/semigroups and exponentials with characters.

Lemma 9. Assume that F is a bounded, totally monotone function, then

a) For any a > 0, $-\Delta_a F$ is bounded totally monotone with $\Delta_a F(t) = F(t+a) - F(t)$.

Proof. $F \ge 0$, $a, t \ge 0$

$$\begin{pmatrix} F(2t) & F(t+a) \\ F(t+a) & F(2a) \end{pmatrix}$$

is positive definite, so its determinant is positive and

$$F(t+a) \leq \sqrt{F(2t)F(2a)}$$

Then (starting with a = 0)

$$F(t) \le F(0)^{1/2} F(2t)^{1/2} \le F(0)^{3/4} F(4t)^{1/4} \le \dots \le F(0)^{(2^n-1)/2^n} F(2^n t)^{1/2^n} \le F(0)^{(2^n-1)/2^n} C^{1/2^n}$$

and so we conclude that $F(t) \leq F(0)$. Take $\lambda_1, \dots, \lambda_k \in \mathbb{C}$ and $t_1, \dots, t_k \in \mathbb{R}_+$ and define

$$G(a) = \sum_{i,j}^{n} F(a + t_i + t_j) \lambda_i \bar{\lambda}_j$$

and consider other points $\sigma_1, \ldots, \sigma_n \in \mathbb{C}$ and $a_1, \ldots, a_n \in \mathbb{R}_+$ then

$$\sum_{i,j}^{k} G(a_i + a_j) \sigma_i \bar{\sigma}_j = \sum_{i,j}^{n} \sum_{r,s}^{k} F(a_i + a_j + t_r + t_s) \lambda_r \bar{\lambda}_s \sigma_i \bar{\sigma}_j \geqslant 0$$

using the fact that F is totally monotone. So G is also totally monotone and as a consequence $G(a) \leq G(0)$ and $G(0) - G(a) \geq 0$ or otherwise

$$\sum_{i,j}^{n} \left(-\Delta_{a} F(t_{i} + t_{j}) \right) \lambda_{i} \bar{\lambda}_{j} = \sum_{i,j}^{n} \left(F(t_{i} + t_{j}) - F(a + t_{i} + t_{j}) \right) \lambda_{i} \bar{\lambda}_{j} \geqslant 0$$

П

so $-\Delta_a F$ is bounded and totally monotone.

Corollary 10. *If F is bounded and totally monotone, for any* $a_1, ..., a_n \in \mathbb{R}_+$

$$(-1)^n \Delta_{a_1} \cdots \Delta_{a_n} F$$

is totally monotone and therefore $(-1)^n \Delta_{a_1} \cdots \Delta_{a_n} F \geqslant 0$.

Theorem 11. (Krein–Milman) Let X be a locally convex Hausdorff topological vector space and let $K \subseteq X$ be a compact convex subset, then the set E(K) of extreme points of K is non-void and for any $y \in K$ there exists a probability measure v^y on E(K) such that

$$y = \int_{E(K)} x \nu^{y} (\mathrm{d}x)$$

where the integral is understood in the weak sense, i.e. for any $\lambda \in X^*$ we have (Pettis integral)

$$\lambda(y) = \int_{E(K)} \lambda(x) v^{y}(\mathrm{d}x).$$

Recall that locally convex means that there is a base of the topology composed by convex sets. For example $\mathbb{R}^{(0,+\infty)}$ with the product topology is a locally convex and Hausdorff.

Proof. (of Bernstein theorem) We prove now that if F is bounded and totally monotone there exists a positive measure μ on \mathbb{R}_+ such that $F(t) = \int_{\mathbb{R}_+} e^{-tx} \mu(\mathrm{d}x)$. The rest of the claim is left as an exercise. Consider the space $\mathscr{C} \subseteq \mathbb{R}^{(0,\infty)}$ such that

$$\mathscr{C} = \{ F \in \mathbb{R}^{(0,\infty)}, F \geqslant 0 : \text{ for all } a_1, \dots, a_n \in \mathbb{R}_+ (-1)^n \Delta_{a_1} \dots \Delta_{a_n} F \geqslant 0 \}$$

Note that $\mathscr C$ is closed for the pointwise convergence and it is convex, but not compact. In particular this means that for $F \in \mathscr C$ we have $F(t_1) - F(t_2) \geqslant 0$ if $t_1 \leqslant t_2$ and we let $F(0+) = \lim_{t \downarrow 0} F(t)$ by monotone limit. In principle we could have $F(0+) = +\infty$. F is bounded iff $F(0+) < \infty$. Since $\Delta_a \Delta_a F \geqslant 0$ we have

$$\frac{1}{2}F(t) + \frac{1}{2}F(t+2a) \geqslant F(t+a)$$

and this means that F is midpoint convext. On the other hand, for any 0 < c < d we have that $0 \le F(d) \le F(c)$ so F is bounded in [c,d]. It is left as an exercise to prove that if F is midpoint convex and bounded then F is continuous in (c,d) (Hint: show that $F: [-\delta,\delta] \to \mathbb{R}$ midpoint convex and if F has a discontinuity in 0 then it is unbounded). By this result, F is continuous on \mathbb{R}_+ . Consider a subset $K \subseteq \mathcal{C}$ as follows $K = \{F \in \mathcal{C}: F(0+) = 1\}$. This is now a closed convex set and $K \subset [0,1]^{\mathbb{R}_+}$ which is a compact space (always wrt. to the pointwise convergence). By Krein–Milman this means that for any $y \in K$ we can write it as a convex combination of extreme points. What are these extreme points E(K) of K? For any $F \in K$ we have that exists $a \in \mathbb{R}_+$ such that F(a) > 0 and 1 = F(0) > F(a) > 0 unless F = 1 everywhere. In the second case $1 \in E(K)$ since it is the biggest element of K and therefore cannot be decomposed in a convex combination of other elements. In the other case

$$F(t) = \frac{F(t+a)}{F(a)}F(a) + \frac{-\Delta_a F(t)}{1 - F(a)}(1 - F(a))$$

so $F(t+a)/F(a) \in K \subseteq \mathcal{C}$ so this implies that if $F \in E(K)$ we need to have F(t+a) = F(t)F(a). This is true to all a for which 1 > F(a) > 0. Since F is continuous and a solution of that functional equation, but all these solutions are of the form $F(t) = \exp(-st)$ for some $s \in \mathbb{R}_+$. Then if $F \in K$ there exists a probability measure μ on \mathbb{R}_+ such that

$$F(t) = \int_{\mathbb{R}_+} e^{-st} \mu(\mathrm{d}s).$$

This proves the key claim in the theorem if F is bounded and $F \in K$. However is clear that if F is totally monotone, then $F \in \mathcal{C}$ and if $0 < F(0+) < \infty$ we have that F(t)/F(0+) is bounded and >0 and in K. \square

Lemma 12. For any $h \in \mathcal{H}$ and $t \ge 0$,

$$F_K(t,h) = \int_{\mathbb{R}_+} e^{-tx} \mu^h(\mathrm{d}x)$$

where $\mu^h(\mathbb{R}_+) = ||h||^2$.

Proof. F_K is bounded because $|F_K(t,h)| \le ||Kh|| ||h|| \le ||h||^2$ and totally monotone, so it has this representation note that $F(0,h) = ||h||^2$.

Lemma 13. There is only one C^* representation X_0 of $C^0_{\infty}(\mathbb{R}_+, \mathbb{C})$ such that

$$X_0(e^{-t}) = K(t)$$

Proof. Consider the set $\mathscr{E} = \operatorname{span}_{\mathbb{C}}\{e^{-tx}, t \ge 0\} \subset C_{\infty}^{0}$. Moreover \mathscr{E} is a *-subalgebra on C_{∞}^{0} and we define

$$X_{00}$$
: $\mathcal{E} \to \mathcal{B}(\mathcal{H})$

as $X_{00}(e^{-tx}) = K(t)$ and then extend by linearity to all \mathscr{E} . X_{00} is a *-homomorphism since K is a semigroup. Moreover for $f = \sum_i \lambda_i e^{-t_j x}$ we have

$$\langle h, X_{00}(f) \, h \rangle = \sum_i \, \lambda_i F_K(t_i, h) = \sum_i \, \lambda_i \int_{\mathbb{R}_+} e^{-t_i x} \mu^h(\mathrm{d} x) = \int_{\mathbb{R}_+} f(x) \, \mu^h(\mathrm{d} x)$$

so by using that $X_{00}(f)$ is self-adjoint

$$|\langle X_{00}(f)h, X_{00}(f)h\rangle| = |\langle h, X_{00}(f^2)h\rangle| \le ||f^2||_{\infty} ||h||^2 = ||f||_{\infty}^2 ||h||^2,$$

and , we have that $||X_{00}(f)|| \le ||f||_{\infty}$. As exercise we leave to prove that $\mathscr E$ is dense in $C^0_{\infty}(\mathbb R_+,\mathbb C)$ (Stone-Weierstrass and a localization argument). Then we can extend X_{00} from $\mathscr E$ to C^0_{∞} by continuity with the operator norm.