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Definition 1. {K(?)};cr, € B(I8). We say that K(t) is a strongly continuous semigroup of self-adjoint
contractions if

i. K(t)y=K()*, K(0)=1, K(1)K(s)=K(t+35s), fort,s>0.
ii. t—K(t) is strongly continuous

iii. |K(0)h|<|hlt=0.
We want to prove now that

Theorem 2. Assume that K is a strongly continuous semigroup of self-adjoint contractions then there exists
a unique x-representation X of C,?(Rh C) on 96 such that

i. X(e™)=K(r)

ii. Iff,— fpointwise and sup,||f,| < oo then X (f,) = X (f) weakly.

Definition 3. If G: R — C we call G positive definite if for any A, ..., 2, € C and ty,...,t; € R we have

/L‘ijc(l,‘—lj) >0
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Definition 4. We say that F: R . - C is totally monotone if for any 11,..., 2, € C and ty,...,t, € R, we have

k
Z /li/ijF(l[+ lj) =>0.
ij=1

Take U a unitary group on 34. For any h € 96 we define Fy(t,h) =(U(t)h,h). If K is a self-adjoint contra-
tion semigroup we define Fx (t,h) = (K (t)h, h).

Theorem 5. Let U and K as before, then Fy is positive definite and F is totally monotone.

Proof. Consider K, the case of U is similar. Take 1;,..., ;€ C and t,,...,# € R, and just compute

k
0< <Z AR ()h, Y liK(ti)h> =Y Al

i,j=1

using the fact that K is self-adjoint and a semigroup. O



Theorem 6. (Bochner) G is a continuous positive definite function iff there exists a bounded positive mea-
sure it on R such that

G(t) = IR ™ p(d).

Theorem 7. (Bernstein) F is a bounded totally monotone function iff there exists a bounded positive mea-
sure p on R, and a constant C 20 such that

F(1) :CIR e u(dx).

Remark 8. These results can be generalises in a more abstract setting by replacing R and R, with other
topological groups/semigroups and exponentials with characters.

Lemma 9. Assume that F is a bounded, totally monotone function, then

a) For any a>0, —A,F is bounded totally monotone with AF(t) =F(t+a)—F(t).

Proof. F>0,a,t>0

FQ2t) F(t+a)
(F(t+a) FQ2a) )

is positive definite, so its determinant is positive and

F(t+a)<{F(2t)F(2a)
Then (starting with a =0)
F(t)<F(0)'2FQ20'2<F (034 F(4n'4< .- <F(0)F DT FQr /2 < F(0) @072 1/

and so we conclude that F(¢) <F(0). Take Ay,...,.A4xr€Cand 7q,...,1, € R, and define

Gla)=) Fla+t;+1)Lik;

ij

and consider other points oy,...,6,€ C and ay,...,a,€ R, then
k n k
Z G(a[+aj)ai6j= Z Z F(a[+aj+t,+ts)/1,lsa,~6j20
ij iLj rs

using the fact that F is totally monotone. So G is also totally monotone and as a consequence G(a) < G(0)
and G(0) —G(a) =0 or otherwise

n n

Y (AFW+1))Aidj= Y (Flti+1;)=F(a+t+1)) 2iA;>0
bJ LJ
so —A,F is bounded and totally monotone. O

Corollary 10. If F is bounded and totally monotone, for any ay,...,a,€ R,



is totally monotone and therefore (—1)"A, -+ Ay F > 0.

Theorem 11. (Krein—Milman) Let X be a locally convex Hausdor{f topological vector space and let K € X
be a compact convex subset, then the set E(K) of extreme points of K is non-void and for any y € K there
exists a probability measure v> on E(K) such that

- y
y F) xvY(dx)

where the integral is understood in the weak sense, i.e. for any 2 € X* we have (Pettis integral)

A(y) = fm) 2(x) v (dx).

Recall that locally convex means that there is a base of the topology composed by convex sets. For example
R (%-+) with the product topology is a locally convex and Hausdorff.

Proof. (of Bernstein theorem) We prove now that if F' is bounded and totally monotone there exists a
positive measure u on R, such that F(¢) = f e ™ u(dx). The rest of the claim is left as an exercise.

Ry
Consider the space € € R %> such that
€ ={FeR"®) F>0:forall a,...,a, e R, (=1)"A,- A, F>0)

Note that € is closed for the pointwise convergence and it is convex, but not compact. In particular this
means that for '€ € we have F(t)) - F(t;) >0 if t; <t and we let F(0+ ) =lim,;;oF () by monotone limit.
In principle we could have F(0+) =+oco. F is bounded iff F(0+ ) <co. Since A A,F >0 we have

%F(t)+%F(t+2a)2F(l+a)

and this means that F is midpoint convext. On the other hand, for any 0 < ¢ <d we have that 0< F(d) < F(c)
so F is bounded in [c,d]. It is left as an exercise to prove that if F' is midpoint convex and bounded then
F is continuous in (c,d) (Hint: show that F:[-8, §] - R midpoint convex and if F has a discontinuity
in O then it is unbounded). By this result, F' is continuous on R,. Consider a subset K C € as follows
K={Fe®:F(0+)=1)}. This is now a closed convex set and K c [0, 1]®* which is a compact space (always
wrt. to the pointwise convergence). By Krein—Milman this means that for any y € K we can write it as a
convex combination of extreme points. What are these extreme points £(K) of K? For any F € K we have
that exists a € R, such that F(a)>0and 1 =F(0) > F(a)>0 unless F =1 everywhere. In the second case
1 e E(K) since it is the biggest element of K and therefore cannot be decomposed in a convex combination
of other elements. In the other case

F(t+a)
F(a)

—AJF (1)

F(r)= —F(a)

F(a)+ (I-F(a))

so F(t+a)/F(a) €K C € so this implies that if F'€ E(K) we need to have F(t+a)=F (t)F(a). This is true
to all a for which 1> F(a) >0. Since F is continuous and a solution of that functional equation, but all these
solutions are of the form F (1) =exp(-st) for some s€ R ,. Then if F €K there exists a probability measure
1 on R, such that

F(1) =fR e 1 (ds).

This proves the key claim in the theorem if F is bounded and F' € K. However is clear that if F is totally
monotone, then F € € and if 0 < F(0 +) < oo we have that F(t)/F(0+) is bounded and >0 andin K. O



Lemma 12. Forany he 36 and t >0,

Fi(t,h)= fR e il (dx)

+

where (i"(R ) =||h|

Proof. Fx is bounded because |Fk (¢, h)| < |KAl| |12l < |hl* and totally monotone, so it has this representation
note that F (0, k) = ||A|. O

Lemma 13. There is only one C* representation X, of C2(R,,C) such that

Xo(e™) =K(t)

Proof. Consider the set &€ =spanc{e™,t>0} C CY. Moreover & is a x-subalgebra on CY% and we define
XooZ E—-> B (%)

as Xgo(e™™) =K (¢) and then extend by linearity to all . Xq is a *-homomorphism since K is a semigroup.
Moreover for f=3". ;™" we have

(hXoo () h) =Y AiF(tah) =Y i, e phid) = [ fx) u(an)

so by using that Xoo(f) is self-adjoint

[(Xoo()hs Xoo(f) )| = I¢h, Xoo (f%) W< 2 eolll> = IR AN,

and , we have that [|Xoo(f)[ <llfl~- As exercise we leave to prove that € is dense in C%(R,,C) (Stone-
Weierstrass and a localization argument). Then we can extend Xoo from & to C2, by continuity with the
operator norm. m]






