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Definition 1. {K(t)}t∈ℝ+ ⊆ ℬ(ℋ). We say that K(t) is a strongly continuous semigroup of self-adjoint
contractions if

i. K(t)=K(t)∗, K(0)=1, K(t)K(s)=K(t + s), for t, s⩾0.

ii. t ↦K(t) is strongly continuous

iii. ‖K(t)h‖⩽‖h‖,t ⩾0.

We want to prove now that

Theorem 2. Assume that K is a strongly continuous semigroup of self-adjoint contractions then there exists
a unique ∗-representation X of Cb

0(ℝ+,ℂ) on ℋ such that

i. X(e−t ⋅)=K(t)

ii. If fn → f pointwise and supn ‖ fn‖<∞ then X( fn)→X( f ) weakly.

Definition 3. If G:ℝ→ℂ we call G positive definite if for any 𝜆1, . . . ,𝜆k ∈ℂ and t1, . . . , tk ∈ℝ we have

�
i, j=1

k

𝜆i𝜆̄jG(ti − tj)⩾0

Definition 4. We say that F:ℝ+→ℂ is totally monotone if for any 𝜆1,...,𝜆k ∈ℂ and t1,..., tk ∈ℝ+ we have

�
i, j=1

k

𝜆i𝜆̄jF(ti + tj)⩾0.

Take U a unitary group on ℋ. For any h∈ℋ we define FU(t,h)=⟨U(t)h,h⟩. If K is a self-adjoint contra-
tion semigroup we define FK(t,h)=⟨K(t)h,h⟩.

Theorem 5. Let U and K as before, then FU is positive definite and FK is totally monotone.

Proof. Consider K, the case of U is similar. Take 𝜆1, . . . ,𝜆k ∈ℂ and t1, . . . , tk ∈ℝ+ and just compute

0⩽��
i

𝜆iK(ti)h,�
i

𝜆iK(ti)h�= �
i, j=1

k

𝜆i𝜆̄jFK(ti + tj)

using the fact that K is self-adjoint and a semigroup. □
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Theorem 6. (Bochner) G is a continuous positive definite function iff there exists a bounded positive mea-
sure 𝜇 on ℝ such that

G(t)=�
ℝ

e itx𝜇(dx).

Theorem 7. (Bernstein) F is a bounded totally monotone function iff there exists a bounded positive mea-
sure 𝜇 on ℝ+ and a constant C ⩾0 such that

F(t)=C�
ℝ+

e−tx𝜇(dx).

Remark 8. These results can be generalises in a more abstract setting by replacing ℝ and ℝ+ with other
topological groups/semigroups and exponentials with characters.

Lemma 9. Assume that F is a bounded, totally monotone function, then

a) For any a>0, −ΔaF is bounded totally monotone with ΔaF(t)=F(t +a)−F(t).

Proof. F ⩾0, a, t ⩾0

((((((( F(2t) F(t +a)
F(t +a) F(2a) )))))))

is positive definite, so its determinant is positive and

F(t +a)⩽ F(2t)F(2a)�

Then (starting with a=0)

F(t)⩽F(0)1/2F(2t)1/2 ⩽F(0)3/4F(4t)1/4 ⩽ ⋅ ⋅ ⋅ ⩽F(0)(2n−1)/2nF(2n t)1/2n ⩽F(0)(2n−1)/2n C1/2n

and so we conclude that F(t)⩽F(0). Take 𝜆1, . . . ,𝜆k ∈ℂ and t1, . . . , tk ∈ℝ+ and define

G(a)=�
i, j

n

F(a+ ti + tj)𝜆i𝜆̄j

and consider other points 𝜎1, . . . ,𝜎n ∈ℂ and a1, . . . ,an ∈ℝ+ then

�
i, j

k

G(ai+aj)𝜎i𝜎̄j =�
i, j

n

�
r,s

k

F(ai+aj + tr + ts)𝜆r𝜆̄s𝜎i𝜎̄j ⩾0

using the fact that F is totally monotone. So G is also totally monotone and as a consequence G(a)⩽G(0)
and G(0)−G(a)⩾0 or otherwise

�
i, j

n

(−ΔaF(ti + tj))𝜆i𝜆̄j =�
i, j

n

(F(ti + tj)−F(a+ ti+ tj))𝜆i𝜆̄j ⩾0

so −ΔaF is bounded and totally monotone. □

Corollary 10. If F is bounded and totally monotone, for any a1, . . . ,an ∈ℝ+

(−1)nΔa1⋅ ⋅ ⋅ΔanF
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is totally monotone and therefore (−1)nΔa1⋅ ⋅ ⋅ΔanF ⩾0.

Theorem 11. (Krein–Milman) Let X be a locally convex Hausdorff topological vector space and let K ⊆X
be a compact convex subset, then the set E(K) of extreme points of K is non-void and for any y ∈K there
exists a probability measure 𝜈y on E(K) such that

y=�
E(K)

x𝜈y(dx)

where the integral is understood in the weak sense, i.e. for any 𝜆∈X∗ we have (Pettis integral)

𝜆(y)=�
E(K)

𝜆(x)𝜈y(dx).

Recall that locally convex means that there is a base of the topology composed by convex sets. For example
ℝ(0,+∞) with the product topology is a locally convex and Hausdorff.

Proof. (of Bernstein theorem) We prove now that if F is bounded and totally monotone there exists a
positive measure 𝜇 on ℝ+ such that F(t) = ∫ℝ+

e−tx𝜇(dx). The rest of the claim is left as an exercise.
Consider the space 𝒞⊆ℝ(0,∞) such that

𝒞={F ∈ℝ(0,∞),F ⩾0: for all a1, . . . ,an ∈ℝ+ (−1)nΔa1⋅ ⋅ ⋅ΔanF ⩾0}

Note that 𝒞 is closed for the pointwise convergence and it is convex, but not compact. In particular this
means that for F ∈𝒞 we have F(t1)−F(t2)⩾0 if t1 ⩽ t2 and we let F(0+)= limt↓0F(t) by monotone limit.
In principle we could have F(0+)=+∞. F is bounded iff F(0+)<∞. Since ΔaΔaF ⩾0 we have

1
2F(t)+ 1

2F(t +2a)⩾F(t +a)

and this means that F is midpoint convext. On the other hand, for any 0<c<d we have that 0⩽F(d)⩽F(c)
so F is bounded in [c,d]. It is left as an exercise to prove that if F is midpoint convex and bounded then
F is continuous in (c, d) (Hint: show that F: [−𝛿, 𝛿] → ℝ midpoint convex and if F has a discontinuity
in 0 then it is unbounded). By this result, F is continuous on ℝ+. Consider a subset K ⊆ 𝒞 as follows
K ={F ∈𝒞:F(0+)=1}. This is now a closed convex set and K ⊂[0,1]ℝ+ which is a compact space (always
wrt. to the pointwise convergence). By Krein–Milman this means that for any y ∈ K we can write it as a
convex combination of extreme points. What are these extreme points E(K) of K? For any F ∈K we have
that exists a∈ℝ+ such that F(a)>0 and 1=F(0)>F(a)>0 unless F =1 everywhere. In the second case
1∈E(K) since it is the biggest element of K and therefore cannot be decomposed in a convex combination
of other elements. In the other case

F(t)= F(t +a)
F(a) F(a)+ −ΔaF(t)

1−F(a) (1−F(a))

so F(t +a)/F(a)∈K ⊆𝒞 so this implies that if F ∈E(K) we need to have F(t+a)=F(t)F(a). This is true
to all a for which 1>F(a)>0. Since F is continuous and a solution of that functional equation, but all these
solutions are of the form F(t)=exp(−st) for some s∈ℝ+. Then if F ∈K there exists a probability measure
𝜇 on ℝ+ such that

F(t)=�
ℝ+

e−st𝜇(ds).

This proves the key claim in the theorem if F is bounded and F ∈ K. However is clear that if F is totally
monotone, then F ∈𝒞 and if 0<F(0+)<∞ we have that F(t)/F(0+) is bounded and >0 and in K. □
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Lemma 12. For any h∈ℋ and t ⩾0,

FK(t,h)=�
ℝ+

e−tx𝜇h(dx)

where 𝜇h(ℝ+)= ‖h‖2.

Proof. FK is bounded because |FK(t,h)|⩽ ‖Kh‖ ‖h‖⩽‖h‖2 and totally monotone, so it has this representation
note that F(0,h)= ‖h‖2. □

Lemma 13. There is only one C∗ representation X0 of C∞
0 (ℝ+,ℂ) such that

X0(e−t ⋅)=K(t)

Proof. Consider the set ℰ=spanℂ{e−tx, t ⩾0}⊂C∞
0 . Moreover ℰ is a ∗-subalgebra on C∞

0 and we define

X00:ℰ→ℬ(ℋ)

as X00(e−tx)=K(t) and then extend by linearity to all ℰ. X00 is a ∗-homomorphism since K is a semigroup.
Moreover for f =∑i 𝜆ie−tjx we have

⟨h,X00( f )h⟩=�
i

𝜆iFK(ti,h)=�
i

𝜆i�ℝ+
e−tix𝜇h(dx)=�

ℝ+
f (x)𝜇h(dx)

so by using that X00( f ) is self-adjoint

|⟨X00( f )h,X00( f )h⟩|= |⟨h,X00( f 2)h⟩|⩽ ‖ f 2‖∞‖h‖2 =‖ f ‖∞
2 ‖h‖2,

and , we have that ‖X00( f )‖ ⩽ ‖ f ‖∞. As exercise we leave to prove that ℰ is dense in C∞
0 (ℝ+, ℂ) (Stone-

Weierstrass and a localization argument). Then we can extend X00 from ℰ to C∞
0 by continuity with the

operator norm. □
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