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We continue the proof of the last lecture.

Theorem 1. Let (K(t)),>0 be a strongly continuous semigroup of self-adjoint contractions. There exists a
unique C*-homomorphism X: CIS)(RJr; €) > B(96) such that

1. X(e™)=K(1)

2. iffu— fpointwise and sup, | f,ll < oo, then X (f,,) = X (f) weakly.

Last time we proved that:

1. There exists a unique *-homomorphism X: C% (R, C) - %B(96) where C%(R ., C) is the set of
continuous functions going to zero at infinity.

2. For any h € 96 there exists a unique positive measure ,uh on R, such that ;1”(]R+) = k| and

(K(t)h,h):IR e il (dx).

3. Forany fe C%L(R,,C) we have
X (= Fo0utd),

We introduce a measure
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by polarisation and we have

X(Phisho) = [ fe0) a2,

Lemma 2. We have that
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Proof. The measure /"> can be characterised by

(K(hiho)= [ e ()

+

and we have

= —tx X (f)h1,ha — —tx hiha
KOX(Dhho) = [ e X Dhian = [ emf () p(dv)
so by identification of Laplace transforms we have the claim. O

Proof. (of Theorem 1) Define the linear operator X(f) by

R = [ f0o i



for all iy, h, € 36. We have

I8 Dlsn = sup |[, Foru" P d0|<ifle sup W RIS
Ih1ll=lh2ll=1 lh1ll=lh2ll=1

SO X(f) is bounded. Moreover one can show easily that (X(f)hl,h2> = <h1,)2(f*)h2>. The approximation
property is quite easy to prove since if f, - f pointwise and the family is bounded then by dominated
convergence

X(fi)hi,ha) = IR fulx) poh2dx — fR F(x) pedx = (X (f)hy, ho)

so we have weak convergence. Moreover if f & C,?(RJr) then there exists (f;,)n>0C C%(R,) such that = f

pointwise and sup, ||f,| < co (simply by multiplying f with a sequence of dilations of a given bounded

functions of compact support). So there can be only one such operator which extends X from C2. We have

to prove that X is an homomorphism. Take f, g€ CJ(R ., C) and consider two approximating sequences
(f)n (81)n € CL(R ) then taking n — oo

X (fgm)h1,ha) < (X(fugmhi, ha) = (X (f) X (gm)h1,ha) > (X ()X (gm) 1, o)

so taking m — oo we get (X fg Yhy,hy) =(X (f) (g)hl,hz) This concludes the proof by taking X =X. O

Now we have seen that if (U(¢)),er is a strongly continuous unitary group this is equivalent to have an
representation Xy of C,? (R,C) in B(96) and if (K(2)),>0 is a self-adjoint, strongly continuous contraction
semigroup, then we have a representation Xx of C,? (R4, C) on B(96). We want to look into the relation
between these two objects.

Definition 3. We say that (U(1));cr (as before) has positive energy for each f € C)(R, C) such that
supp(f) € (—o0,0) we have that Xy(f) =

Remark 4. Assume that f;, f> € CP(R, C) such that f; = f> on [0, o) then if U has positive energy then
Xy(f1) =Xu(f2).

Lemma 5. U has positive energy iff for any he 96 uf; is supported on R, = [0, o).

Proof. (Xy(f)hy,ho) = fRf )y 1f the measure 1s supported on R, then X(f) =0 if supp(f) € R .
On the other hand if supp(f) = (-0, 0) then fR flx dx) =0 from which we get that supp(z") CR,. O

Remark 6. If (U(¢));cr has positive energy and g C,?(R+, C) then we can define Xy(g) in a unique way
as follows: we take g € CbO(R, C) such that g=g on R, and we define Xy (g) =Xy(g). This definition is a
good one since the value do not depends on the extension g, indeed if § is another extension then g - g is
supported on (—o0,0) and Xy () =Xy(g).

Theorem 7. Assume (U(t));cRr is a strongly continuous unitary group with positive energy, then K(t) =
Xy(e™) is a strongly continuous self-adjoint contraction semigroup and also Xy =Xx on CY(R,,C). The
converse is true, i.e. if we have K and we define U (t) =Xk (e™"), then (U(t)),cr is a strongly continuous
unitary group with positive energy and Xg = Xy.

Proof. From e "¢ 5 = ¢~\1*2)5 we have K(¢;)K(t2) = K(t; + 1;) and the other properties follows easily,
moreover by dominated convergence (h, K (¢)hy) - (h1,K(s)h,) if t - s and strong continuity follows since
K is a contraction, i.e. |K(1)h|*= (h,K(2t)h) <lle™*" | cpr , 1" (R,) =[|h]. The reverse implication is left as
exercise. m]



We want to justify now the name of “positive energy”. This is not fundamental in the following but will
give a better grasp of the connection with standard physical intuition.

Let Dy be a subspace of 96 such that he Dy iff t— U(t)h is strongly differentiable in 0. For any he Py
we define

i~ Ly L=

€ 9.
1150 t

Is simple to prove that H is a linear operator H: g — 96. For generic U, the operator H is not bounded,
which implies that H cannot be extended as a continuous operator on all 96. H is an unbounded operator
and Yy is called the domain of H.

Lemma 8. he Dy iff
foZ,uh’U(deOO, and then ||Hh||2:f 2V ().
Ifh1 € Dy and hy € 36 then

[, WiV d) <oo, and  (HR) = [ xp (),

Proof. Step 1. Forany hy € Py and h,e H

f lelyh"hz’Ul(dx)z sup f xf(x h‘ h2U(dx) = sup X(xf(x))hy, ho)
R FeCR,C)IfI<1 ¥ R _feCP<R,C>,H_f'H<1

1/2
<rala( _ sup ||X<xf<x>>h1n)”2<||h2||H[ sup [ (xf(x))zuh"”"”(dx)] <Cullhal
FeCAR,C),IflI<1 feCAR,C),IfI<1

But this implies that there exists 4 such that (h{,ho) = [ xp""">V(dx). Now we want to prove that i{ = Hh;

1

<.i<U<) Dh=hi (U (1)~ Dh- h1> L

2
(U(t)—l)h” +||h{||2—2Re<%(U(t)—l)h,hi>

1—-cos(tx) sin(zx) 1
:fR (2—t2 +x2—2—t x),uh (dx)

G(t,x)

Now |G(t,x)| < Cx? is uniformly bounded and pointwise converge to zero as t — 0, so by Lebesgue domi-
nated convergence we conclude that this quantity goes not zero. So we have that if [ x?/(dx) < oo we have
that U (t)h is strongly differentiable in zero. On the other hand, if U(#)h is strongly dlﬁerentlable then

2
sup .l(U(t)—l)hH =C<o
re(-11) LT
and in particular
- 2
X2l (dx) =2 liminfM () <liminf 2 [ 225909 ) = timinf | L0y - )il < €.
)
10 1? -0 1? >0 ||it
The rest of the proof is left as exercise. m]

Theorem 9. Dy is dense in 36 and hy,hr € D (H) we have (Hhy,hy) =(h1,Hh»), so H is symmetric



Proof. If h € 94 define ho= foe U (s)hds we prove that hy € P y: indeed

dﬂm 1 ihx —ihx
a7 =;(e -D(e™™-1)
then
fxz,uh‘(dx) < Cf p(dx) < 0o
and hy e Du.

. [4 ¢ .
Ielt.x#hc(dx) — <U(t)f0 U(sy)hds,, Io U(SZ)/’ldS2> = fR e'(t”'HZ)x/lh(dx)dsldz

[0,e12

and by Fubini we can exchange the integrals and obtain
f eitx#hg(dx) — f eitxiz(eihx -1 )(e—ihx -1 )//’(dx)
X
and by identification of Fourier transforms. We have ||h¢/¢—hl|—- 0 as € - 0, we have

2
< sup [(U(s)—Dhll=0(0)

1 r¢
I /e—h||2=\|— (U(s) - 1)hds
‘ Q fO s€[0,0]

by strong continuity. The symmetry is quite simple since

U(r)-1
it

(th,h2>=lin(}< hl,h2>=1ir%<hl,Mh2>=<h,,Hh2>.
- -

-1t

Remark 10. Is possible to prove that (H, P ) is self-adjoint, i.e. H*=H. (given the natural definition of
the adjoint of a densely defined unbounded operator)

If hy,h, € Dy we define € (hy, hy) = (Hhy,hy). If hy € Py and ||h| 9 =1 then we define &€ (h, h) to be the
energy of the state h € 6.

Recall that (96, A4, Qo) is our quantum space and if & € 34 gives the vector state w"(a) = (Qo(a)h, h). So
the energy is an extension of this formula for the unbounded operator H which formally is the derivative of
the time-evolution group U. We had Q,(a) = U(-t)Qo(a)U(¢). If it is possible to take the derivative wrt.
to t then we obtain

1
0,:Q1(a) =—[H, Qi(a)]
(this has to justified).

We have that (hy,hy) = € (hy,h;) is an Hermitian form (i.e. linear in the first and antilinear in the second
variable).

Theorem 11. The form & (hy,h,) is non-negative definite iff (U(t));cr has positive energy.

(to be continued)






