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(Script by M. Gubinelli of the lecture of Francesco.)

We continue the proof of the last lecture.

Theorem 1. Let (K(t))t⩾0 be a strongly continuous semigroup of self-adjoint contractions. There exists a
unique C∗-homomorphism X:Cb

0(ℝ+;𝒞)→ℬ(ℋ) such that

1. X(e−t ⋅)=K(t)

2. if fn → f pointwise and supn ‖ fn‖<∞, then X( fn)→X( f ) weakly.

Last time we proved that:

1. There exists a unique ∗-homomorphism X: C∞
0 (ℝ+, ℂ) → ℬ(ℋ) where C∞

0 (ℝ+, ℂ) is the set of
continuous functions going to zero at infinity.

2. For any h∈ℋ there exists a unique positive measure 𝜇h on ℝ+ such that 𝜇h(ℝ+)=‖h‖2 and

⟨K(t)h,h⟩=�
ℝ+

e−tx𝜇h(dx).

3. For any f ∈C∞
0 (ℝ+,ℂ) we have

⟨X( f )h,h⟩=�
ℝ+

f (x)𝜇h(dx).

We introduce a measure

𝜇h1,h2 ≔ 1
4�

k=0

3

ik𝜇h1+(i)kh2

by polarisation and we have

⟨X( f )h1,h2⟩=�
ℝ+

f (x)𝜇h1,h2(dx).

Lemma 2. We have that

d𝜇X(f )h1,h2

d𝜇h1,h2
= f (x)

Proof. The measure 𝜇h1,h2 can be characterised by

⟨K(t)h1,h2⟩=�
ℝ+

e−tx𝜇h1,h2(dx)

and we have

⟨K(t)X( f )h1,h2⟩=�
ℝ+

e−tx𝜇X(f )h1,h2(dx)=�
ℝ+

e−txf (x)𝜇h1,h2(dx)

so by identification of Laplace transforms we have the claim. □

Proof. (of Theorem 1) Define the linear operator X̃( f ) by

⟨X̃( f )h1,h2⟩=�
ℝ+

f (x)𝜇h1,h2dx
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for all h1,h2 ∈ℋ. We have

‖X̃( f )‖ℬ(ℋ)= sup
‖h1‖=‖h2‖=1

��
ℝ+

f (x)𝜇h1,h2(dx)�⩽ ‖ f ‖∞ sup
‖h1‖=‖h2‖=1

|𝜇h1,h2(ℝ+)|≲ ‖ f ‖∞

so X̃( f ) is bounded. Moreover one can show easily that ⟨X̃( f )h1, h2⟩ = ⟨h1, X̃( f ∗)h2⟩. The approximation
property is quite easy to prove since if fn → f pointwise and the family is bounded then by dominated
convergence

⟨X̃( fn)h1,h2⟩=�
ℝ+

fn(x)𝜇h1,h2dx →�
ℝ+

f (x)𝜇h1,h2dx =⟨X̃( f )h1,h2⟩

so we have weak convergence. Moreover if f ∈Cb
0(ℝ+) then there exists ( fn)n⩾0⊂C∞

0 (ℝ+) such that fn→ f
pointwise and supn ‖ fn‖ < ∞ (simply by multiplying f with a sequence of dilations of a given bounded
functions of compact support). So there can be only one such operator which extends X from C∞

0 . We have
to prove that X̃ is an homomorphism. Take f , g ∈ Cb

0(ℝ+, ℂ) and consider two approximating sequences
( fn)n, (gn)n ⊆C∞

0 (ℝ+) then taking n→∞

⟨X̃( fgm)h1,h2⟩←⟨X̃( fngm)h1,h2⟩= ⟨X̃( fn)X̃(gm)h1,h2⟩→⟨X̃( f )X̃(gm)h1,h2⟩

so taking m→∞ we get ⟨X̃( fg)h1,h2⟩= ⟨X̃( f )X̃(g)h1,h2⟩. This concludes the proof by taking X = X̃. □

Now we have seen that if (U(t))t∈ℝ is a strongly continuous unitary group this is equivalent to have an
representation XU of Cb

0(ℝ,ℂ) in ℬ(ℋ) and if (K(t))t⩾0 is a self-adjoint, strongly continuous contraction
semigroup, then we have a representation XK of Cb

0(ℝ+,ℂ) on ℬ(ℋ). We want to look into the relation
between these two objects.

Definition 3. We say that (U(t))t∈ℝ (as before) has positive energy for each f ∈ Cb
0(ℝ, ℂ) such that

supp( f )⊆(−∞,0) we have that XU( f )=0.

Remark 4. Assume that f1, f2 ∈ Cb
0(ℝ, ℂ) such that f1 = f2 on [0, ∞) then if U has positive energy then

XU( f1)=XU( f2).

Lemma 5. U has positive energy iff for any h∈ℋ 𝜇U
h is supported on ℝ+ =[0,∞).

Proof. ⟨XU( f )h1, h2⟩ = ∫ℝ f (x)𝜇h(dx) if the measure is supported on ℝ+ then X( f ) = 0 if supp( f ) ⊆ ℝ<0.
On the other hand if supp( f )=(−∞,0) then ∫ℝ f (x)𝜇h(dx)=0 from which we get that supp(𝜇h)⊆ℝ+. □

Remark 6. If (U(t))t∈ℝ has positive energy and g∈Cb
0(ℝ+,ℂ) then we can define XU(g) in a unique way

as follows: we take g̃∈Cb
0(ℝ,ℂ) such that g̃=g on ℝ+ and we define XU(g)=XU(g̃). This definition is a

good one since the value do not depends on the extension g̃, indeed if ĝ is another extension then g̃ − ĝ is
supported on (−∞,0) and XU(ĝ)=XU(g̃).

Theorem 7. Assume (U(t))t∈ℝ is a strongly continuous unitary group with positive energy, then K(t) =
XU(e−t ⋅) is a strongly continuous self-adjoint contraction semigroup and also XU =XK on Cb

0(ℝ+,ℂ). The
converse is true, i.e. if we have K and we define U(t) = XK(e it ⋅), then (U(t))t∈ℝ is a strongly continuous
unitary group with positive energy and XK =XU.

Proof. From e−t1se−t2s = e−(t1+t2)s we have K(t1)K(t2) = K(t1 + t2) and the other properties follows easily,
moreover by dominated convergence ⟨h1,K(t)h2⟩→⟨h1,K(s)h2⟩ if t→s and strong continuity follows since
K is a contraction, i.e. ‖K(t)h‖2=⟨h,K(2t)h⟩⩽‖e−2t ⋅‖Cb

0(ℝ+)𝜇h(ℝ+)=‖h‖2. The reverse implication is left as
exercise. □
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We want to justify now the name of “positive energy”. This is not fundamental in the following but will
give a better grasp of the connection with standard physical intuition.

Let 𝒟H be a subspace of ℋ such that h∈𝒟H iff t ↦ U(t)h is strongly differentiable in 0. For any h∈ 𝒟H

we define

Hh= 1
i lim

t→0

U(t)h−h
t ∈ℋ.

Is simple to prove that H is a linear operator H:𝒟H → ℋ. For generic U, the operator H is not bounded,
which implies that H cannot be extended as a continuous operator on all ℋ. H is an unbounded operator
and 𝒟H is called the domain of H.

Lemma 8. h∈𝒟H iff

�
ℝ

x2𝜇h,U(dx)<∞, and then ‖Hh‖2=�
ℝ

x2𝜇h1,h2,U(dx).

If h1 ∈𝒟H and h2 ∈ℋ then

�
ℝ

|x||𝜇h1,h2,U|(dx)<∞, and ⟨Hh1,h2⟩=�
ℝ

x𝜇h1,h2,U(dx).

Proof. Step 1. For any h1 ∈𝒟H and h2∈H

�
ℝ

|x||𝜇h1,h2,U|(dx)= sup
f ∈Cc

0(ℝ,ℂ),‖f ‖⩽1
�

ℝ
xf (x)𝜇h1,h2,U(dx)= sup

f ∈Cc
0(ℝ,ℂ),‖f ‖⩽1

⟨X(xf (x))h1,h2⟩

⩽‖h2‖H� sup
f ∈Cc

0(ℝ,ℂ),‖f ‖⩽1
‖X(xf (x))h1‖�

1/2⩽‖h2‖H(((((((((((((( sup
f ∈Cc

0(ℝ,ℂ),‖f ‖⩽1
�

ℝ
(xf (x))2𝜇h1,h1,U(dx)))))))))))))))

1/2
⩽Ch1‖h2‖H

But this implies that there exists h1′ such that ⟨h1′,h2⟩=∫ℝx𝜇h1,h2,U(dx). Now we want to prove that h1′=Hh1

� 1
it(U(t)−1)h−h1′,

1
it(U(t)−1)h−h1′�=� 1

it(U(t)−1)h�
2
+‖h1′‖2−2Re� 1

it(U(t)−1)h,h1′�

=�
ℝ

�21−cos(tx)
t2 +x2 −2sin(tx)

t x�|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
G(t,x)

𝜇h1(dx)

Now |G(t, x)| ⩽Cx2 is uniformly bounded and pointwise converge to zero as t → 0, so by Lebesgue domi-
nated convergence we conclude that this quantity goes not zero. So we have that if ∫x2𝜇h(dx)<∞ we have
that U(t)h is strongly differentiable in zero. On the other hand, if U(t)h is strongly differentiable then

sup
t∈(−1,1)

� 1
it(U(t)−1)h�

2
=C <∞

and in particular

� x2𝜇h(dx)=2� liminf
t→0

1−cos(tx)
t2 𝜇h(dx)⩽ liminf

t→0
2� 1−cos(tx)

t2 𝜇h(dx)= liminf
t→0

� 1
it(U(t)−1)h�

2
<C.

The rest of the proof is left as exercise. □

Theorem 9. 𝒟H is dense in ℋ and h1,h2 ∈𝒟(H) we have ⟨Hh1,h2⟩=⟨h1,Hh2⟩, so H is symmetric
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Proof. If h∈ℋ define hℓ=∫0
ℓ U(s)hds we prove that hℓ ∈𝒟H: indeed

d𝜇hℓ

d𝜇h = 1
x2(e ihx −1)(e−ihx −1)

then

� x2𝜇hℓ(dx)⩽C� 𝜇h(dx)<∞

and hℓ ∈𝒟H.

� e itx𝜇hℓ(dx)=�U(t)�
0

ℓ
U(s1)hds1,�0

ℓ
U(s2)hds2�=�

[0,ℓ]2
�

ℝ
e i(t+s1+s2)x𝜇h(dx)ds1d2

and by Fubini we can exchange the integrals and obtain

� e itx𝜇hℓ(dx)=� e itx 1
x2(e ihx −1)(e−ihx −1)𝜇h(dx)

and by identification of Fourier transforms. We have ‖hℓ/ℓ−h‖→0 as ℓ→0, we have

‖hℓ/ℓ−h‖2 =�1
ℓ�

0

ℓ
(U(s)−1)hds�

2
⩽ sup

s∈[0,ℓ]
‖(U(s)−1)h‖=o(ℓ)

by strong continuity. The symmetry is quite simple since

⟨Hh1,h2⟩= lim
t→0

�U(t)−1
it h1,h2�= lim

t→0
�h1,

U(−t)−1
−it h2�=⟨h1,Hh2⟩.

□

Remark 10. Is possible to prove that (H, 𝒟H) is self-adjoint, i.e. H∗ =H. (given the natural definition of
the adjoint of a densely defined unbounded operator)

If h1, h2 ∈ 𝒟H we define ℰ(h1, h2) = ⟨Hh1, h2⟩. If h1 ∈ 𝒟H and ‖h‖ℋ = 1 then we define ℰ(h, h) to be the
energy of the state h∈ℋ.

Recall that (ℋ, 𝒜,Q0) is our quantum space and if h ∈ ℋ gives the vector state 𝜔h(a) = ⟨Q0(a)h,h⟩. So
the energy is an extension of this formula for the unbounded operator H which formally is the derivative of
the time-evolution group U. We had Qt(a)= U(−t)Q0(a)U(t). If it is possible to take the derivative wrt.
to t then we obtain

∂tQt(a)= 1
i [H,Qt(a)]

(this has to justified).

We have that (h1, h2) ↦ℰ(h1,h2) is an Hermitian form (i.e. linear in the first and antilinear in the second
variable).

Theorem 11. The form ℰ(h1,h2) is non-negative definite iff (U(t))t∈ℝ has positive energy.

(to be continued)
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