

Lecture 20 – 2020.6.24 – 8:30 via Zoom – F. de Vecchi

(Script by M. Gubinelli of the lecture of Francesco.)

Let $(U(t))_{t\in\mathbb{R}}$ be a strongly continuous unitary group, define $\mathcal{D}_H \subset \mathcal{H}$ as $h \in \mathcal{D}_H$ if U(t)h is strongly differentiable for t=0. We defined the Hamiltonian

$$H(h) = \frac{1}{i} \lim_{t \to 0} \frac{U(t)h - h}{t}$$

We proved that \mathcal{D}_H is dense in H and $h_1 \in \mathcal{D}_H$ iff $\int x^2 \mu^{h,U}(\mathrm{d}x) < \infty$.

The energy \mathscr{E} is the form $\mathscr{E}(h_1,h_2) = \langle Hh_1,h_2 \rangle$ for $h_1,h_2 \in \mathscr{D}_H$ (but one can allow $h_2 \in \mathscr{H}$). We proved that $\mathscr{E}(h_1,h_2) = \overline{\mathscr{E}(h_1,h_2)}$, and the form is Hermitian.

Theorem 1. *U* has positive energy iff $\mathscr{E}(h,h) \geqslant 0$ for all $h \in \mathscr{D}_H$.

Proof. If U has positive energy, we saw in the last lecture that μ^h is supported in \mathbb{R}_+ and we have

$$\mathcal{E}(h,h) = \int_{\mathbb{R}} x \, \mu^{h,U}(\mathrm{d}x) = \int_{\mathbb{R}_+} x \, \mu^{h,U}(\mathrm{d}x) \ge 0.$$

Assume now that $\mathscr E$ is non-negative definite and assume that U has not positive energy, therefore there exists $h \in \mathscr H$ such that μ^h has some support on $(-\infty,0)$. We can assume that $\sup(\mu^h) \subset (-\infty,-c)$ for some c>0 since we can consider the vector $X_U(f)h$ with $\operatorname{supp}(f) \subset (-\infty,-c)$ and $\operatorname{d}\mu^{X(f)h} = f\operatorname{d}\mu^h$. So now taking $h_\ell = \int_0^\ell U(s)h\operatorname{d}s$ and

$$\mu^{h_{\ell}}(\mathrm{d}x) = \frac{1}{x^2} |e^{i\ell x} - 1|^2 \mu^h(\mathrm{d}x).$$

Let d > c such that $\mu([-d, -c]) > 0$. Note that $h_{\ell} \in \mathcal{D}_H$ and

$$\mathscr{E}(h_{\ell}, h_{\ell}) = \int_{\mathbb{R}} x \mu^{h_{\ell}}(\mathrm{d}x) = \int_{\mathbb{R}} x \frac{1}{x^2} |e^{i\ell x} - 1|^2 \mu^h(\mathrm{d}x) < \int_{[-d, -c]} \frac{1}{x} |e^{i\ell x} - 1|^2 \mu^h(\mathrm{d}x)$$

and if ℓ is small enough this quantity is negative.

Recall the definitions

$$F_U(t,h) = \langle U(t)h,h\rangle = \int_{\mathbb{R}} e^{itx} \mu^{h,U}(\mathrm{d}x),$$

$$F_K(t,h) = \langle K(t)h,h \rangle = \int_{\mathbb{R}_+} e^{-tx} \mu^{h,K}(\mathrm{d}x).$$

Theorem 2. The function F_K is holomorphic when $t \in \mathbb{C}$ and $\operatorname{Re}(t) > 0$ and it is continuous when $\operatorname{Re}(t) \ge 0$. Moreover, we have that

$$F_U(s,h) = F_K(is,h) = \lim_{y\downarrow 0} F_K(is+y,h).$$

Proof. If $\operatorname{Re}(t_1) > 0$ take $\varepsilon \in \mathbb{C}$ with $|\varepsilon| < \operatorname{Re}(t_1)$ then

$$|F(t_1+\varepsilon,h)| = \left| \int_{\mathbb{R}_+} e^{-t_1 x} e^{-\varepsilon s} \mu^{h,K}(\mathrm{d}x) \right| \leq \int_{\mathbb{R}_+} e^{-\mathrm{Re}(t_1) x} e^{-|\varepsilon| s} \mu^{h,K}(\mathrm{d}x) < \infty,$$

and by monotone convergence the series

$$\sum_{n} |\varepsilon|^{n} \int_{\mathbb{R}_{+}} e^{-t_{1}x} \frac{x^{n}}{n!} \mu^{h,K}(\mathrm{d}x)$$

is convergent and so F has a convergent power series expansion in the claimed domain and continuity derives from the dominated convergence theorem. Moreover

$$\lim_{y\downarrow 0} F_K(is+y,h) = \int_{\mathbb{R}_+} e^{isx} \mu^{h,K}(\mathrm{d}x) = F_U(s,h)$$

when *U* is defined so that $\mu^{h,K} = \mu^{h,U}$.

Remark 3. We can define the generator H' of K similarly as we defined the generator H of U. Namely $\mathcal{D}_{H'}$ is defined as the set of vectors $h \in \mathcal{H}$ such that K(t)h is strongly differentiable in zero and define

$$H'h = -\lim_{t \downarrow 0} \frac{K(t)h - h}{t}.$$

But if U and K are related so that $X_U = X_K$ then H' = H and $\mathcal{D}_H = \mathcal{D}_{H'}$.

Consider now $\mathcal{H} = L^2(\mathbb{R}^n, dx)$. $\mathcal{H} = C_h^0(\mathbb{R}^n, \mathbb{C})$ and $(Q_0(a)h)(x) = a(x)h(x)$. Define

$$K(t)h = \rho_t * h = \frac{1}{(2\pi t)^{n/2}} \int e^{-|x-y|^2/(2t)} h(y) dy.$$

Theorem 4. $(K(t))_{t\geqslant 0}$ is a strongy continuous, self-adjoint contraction semigroup.

Proof. Let $\mathcal{F}(h) = \int_{\mathbb{R}^n} e^{ikx} h(x) dx$ the Fourier transform. Recall Plancherel's theorem

$$\int_{\mathbb{R}^n} h_1(x) \overline{h_2(x)} dx = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \mathscr{F}(h_1)(k) \overline{\mathscr{F}(h_2)}(k) dk$$

and that $\mathcal{F}(a*b) = (\mathcal{F}a)(\mathcal{F}b)$. Moreover $\mathcal{F}(\rho_t)(k) = \exp(-t|k|^2/2)$. Now

$$\begin{split} \|K(t)h\|_{L^{2}}^{2} &= \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} |\mathscr{F}(\rho_{t} * h)(k)|^{2} \mathrm{d}k = \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \exp(-t|k|^{2}) |\mathscr{F}(h)(k)|^{2} \mathrm{d}k \\ &\leq \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} |\mathscr{F}(h)(k)|^{2} \mathrm{d}k = \|h\|_{L^{2}}^{2} \end{split}$$

so K is a contraction. Moreover

$$||K(t)h - h||_{L^{2}}^{2} = \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} (1 - \exp(-t|k|^{2}/2))^{2} |\mathscr{F}(h)(k)|^{2} dk \to 0$$

as $t \rightarrow 0$, so it is strongly continuous. Additionally it is self-adjoint since

$$\langle K(t)h_1, h_2 \rangle = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp(-t|k|^2/2)^2 \mathcal{F}(h_1)(k) \overline{\mathcal{F}(h_2)(k)} dk = \langle h_1, K(t)h_2 \rangle$$

and the semigroup property derives from

$$\mathcal{F}(K(t)K(s)h)(k) = \exp(-t|k|^2/2)\exp(-s|k|^2/2)\mathcal{F}(h)(k) = \exp(-(t+s)|k|^2/2)\mathcal{F}(h)(k) = \mathcal{F}(K(t+s)h)(k).$$

Take $f \in C^{\infty} \cap L^p$ for any $p \ge 1$. Then in $L^2(\mathbb{R}^n)$ we have

$$\lim_{t\downarrow 0} \mathcal{F}\left(\frac{K(t)f - f}{t}\right)(k) = \lim_{t\downarrow 0} \frac{e^{-tk^2/2} - 1}{t} \mathcal{F}(f)(k) = -k^2 \mathcal{F}(f)(k) = \mathcal{F}(\Delta f)(k)$$

so $H = -\Delta$ and one can prove that $\mathcal{D}_H = H^2$. Moreover $\mathcal{E}(h, h) = \int_{\mathbb{R}^n} |\nabla h|^2 dx \ge 0$. So the semigroup has positive energy (it was already clear from the fact that it is a contraction).

So now

$$F_K(t,h) = \int_{\mathbb{R}^{2n}} \frac{e^{-|x-y|^2/2t}}{(2\pi t)^{n/2}} h(x) \overline{h(y)} dxdy$$

and for $h \in L^2 \cap L^1$ we have the explicit representation

$$F_U(s,h) = F_K(is,h) = \int_{\mathbb{R}^{2n}} \frac{e^{-|x-y|^2/2(is)}}{(2\pi i s)^{n/2}} h(x) \overline{h(y)} dxdy$$

where $(i)^{n/2} = e^{\pi i n/4}$ given the kind of limit we had to perform. We conclude therefore that for $h \in L^2 \cap L^1$

$$(U(s)h)(x) = \int_{\mathbb{R}^n} \frac{e^{-|x-y|^2/2(is)}}{(2\pi i s)^{n/2}} h(y) dy.$$

This is the model of the free particle in \mathbb{R}^n , i.e. a particle not interacting with any external system. In this case $(U(t))_{t\in\mathbb{R}}$ is a unitary group on $L^2(\mathbb{R}^n)$ and the expectation of any observable $Q_t(a)$ on the state ω^h evolves according to the equation

$$\omega_t^h(a) = \langle Q_t(a)h, h \rangle = \langle U(-t)Q_0(a)U(t)h, h \rangle = \langle Q_0(a)U(t)h, U(t)h \rangle.$$

Definition 5. Assume that U has positive energy, we say that $h_0 \in \mathcal{H}$ is a ground state for U iff $U(t)h_0 = h_0$.

Theorem 6. h_0 is a ground state for U iff one of the following equivalent conditions hold:

- 1. $\mu^{h_0}(dx) = \delta_0(dx)$
- 2. $K(t)h_0 = h_0$
- 3. $h_0 \in \mathcal{D}_H$ and $Hh_0 = 0$
- 4. $h_0 \in \mathcal{D}_H$ and $\mathcal{E}(h_0, h_0) = 0$

Proof. Exercise.

Remark 7. The name ground state comes from the fact that h_0 is the state of minimal energy of the system (i.e. the zero energy, in our normalization).

Definition 8. h_0 a cyclic ground state if $span\{U(t_1)Q_0(a_1)U(t_2)Q_0(a_2)\cdots h_0\}$ is dense in \mathcal{H} .

A cyclic ground state allows to reconstruct all the Hilbert space from expectations of time evolutions of observables.

Indeed any $\omega^h(Q_t(a))$ can then be approximated by linear combinations of expressions of the form

$$\langle Q_{t_1}(a_1)\cdots Q_{t_n}(a_n)h_0,h_0\rangle$$

for suitable t_1, \ldots, t_n since we used the fact that h_0 is invariant under U.

Assume that we are given a cyclic ground state.

Wightman functions are defined as

$$\mathbb{W}_{k,\mathbb{A}_k}(t_1,\ldots,t_k) = \langle Q_{t_1}(a_1)\cdots Q_{t_n}(a_n)h_0,h_0\rangle$$

where $\mathbb{A}_k = (a_1, \dots, a_k) \in \mathcal{A}^k$.

Lemma 9. $\mathbb{W}_{k,\mathbb{A}_k}$ is invariant wrt. to time translations, namely

$$\mathbb{W}_{k,\mathbb{A}_k}(t_1,\ldots,t_k) = \mathbb{W}_{k,\mathbb{A}_k}(t_1+s,\ldots,t_k+s)$$

for all $s \in \mathbb{R}$.

Proof. By invariance of the ground state we have

$$W_{k,\mathbb{A}_{k}}(t_{1},\ldots,t_{k}) = \langle Q_{t_{1}}(a_{1})\cdots Q_{t_{n}}(a_{n})h_{0},h_{0}\rangle$$

$$= \langle Q_{t_{1}}(a_{1})\cdots Q_{t_{n}}(a_{n})U(s)h_{0},U(s)h_{0}\rangle$$

$$= \langle U(-s)Q_{t_{1}}(a_{1})U(s)U(-s)\cdots U(-s)Q_{t_{n}}(a_{n})U(s)h_{0},h_{0}\rangle$$

and since $U(-s)Q_{t_1}(a)U(s) = Q_{t_1+s}(a)$ we have the result.

We observe also that we can define the (reduced) function

$$W_{k,\mathbb{A}_k}(\xi_1,\dots,\xi_{k-1}) = \mathbb{W}_{k,\mathbb{A}_k}(t,t+\xi_1,\dots,t_k+\xi_{k-1}) = \langle Q_0(a_1)U(\xi_1)Q_0(a_2)U(\xi_2)\cdots Q_0(a_k)h_0,h_0 \rangle$$
 for $\xi_1,\dots,\xi_{k_1} \in \mathbb{R}$.