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Let (U(t))t∈ℝ be a strongly continuous unitary group, define 𝒟H ⊂ℋ as h∈𝒟H if U(t)h is strongly differ-
entiable for t =0. We defined the Hamiltonian

H(h)= 1
i lim

t→0

U(t)h−h
t

We proved that 𝒟H is dense in H and h1 ∈𝒟H iff ∫x2𝜇h,U(dx)<∞.

The energy ℰ is the form ℰ(h1,h2)=⟨Hh1,h2⟩ for h1,h2∈𝒟H (but one can allow h2∈ℋ). We proved that
ℰ(h1,h2)=ℰ(h1,h2), and the form is Hermitian.

Theorem 1. U has positive energy iff ℰ(h,h)⩾0 for all h∈𝒟H.

Proof. If U has positive energy, we saw in the last lecture that 𝜇h is supported in ℝ+ and we have

ℰ(h,h)=�
ℝ

x𝜇h,U(dx)=�
ℝ+

x𝜇h,U(dx)⩾0.

Assume now that ℰ is non-negative definite and assume that U has not positive energy, therefore there
exists h∈ℋ such that 𝜇h has some support on (−∞,0). We can assume that supp(𝜇h)⊂(−∞,−c) for some
c>0 since we can consider the vector XU( f )h with supp( f )⊂(−∞,−c) and d𝜇X(f )h = f d𝜇h. So now taking
hℓ =∫0

ℓ U(s)hds and

𝜇hℓ(dx)= 1
x2 |e iℓx −1|2𝜇h(dx).

Let d >c such that 𝜇([−d,−c])>0. Note that hℓ ∈𝒟H and

ℰ(hℓ,hℓ)=�
ℝ

x𝜇hℓ(dx)=�
ℝ

x 1
x2 |e iℓx −1|2𝜇h(dx)<�

[−d,−c]

1
x |e iℓx −1|2𝜇h(dx)

and if ℓ is small enough this quantity is negative. □

Recall the definitions

FU(t,h)=⟨U(t)h,h⟩=�
ℝ

e itx𝜇h,U(dx),

FK(t,h)=⟨K(t)h,h⟩=�
ℝ+

e−tx𝜇h,K(dx).

Theorem 2. The function FK is holomorphic when t ∈ℂ and Re(t)>0 and it is continuous when Re(t)⩾0.
Moreover, we have that

FU(s,h)=FK(is,h)=lim
y↓0

FK(is+y,h).

Proof. If Re(t1)>0 take 𝜀∈ℂ with |𝜀|<Re(t1) then

|F(t1 +𝜀,h)|= ��
ℝ+

e−t1xe−𝜀s𝜇h,K(dx)�⩽�
ℝ+

e−Re(t1)xe−|𝜀|s𝜇h,K(dx)<∞,
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and by monotone convergence the series

�
n

|𝜀|n�
ℝ+

e−t1x xn

n!𝜇h,K(dx)

is convergent and so F has a convergent power series expansion in the claimed domain and continuity
derives from the dominated convergence theorem. Moreover

lim
y↓0

FK(is+y,h)=�
ℝ+

e isx𝜇h,K(dx)=FU(s,h)

when U is defined so that 𝜇h,K =𝜇h,U. □

Remark 3. We can define the generator H′ of K similarly as we defined the generator H of U. Namely
𝒟H′ is defined as the set of vectors h∈ℋ such that K(t)h is strongly differentiable in zero and define

H′h=−lim
t↓0

K(t)h−h
t .

But if U and K are related so that XU =XK then H′=H and 𝒟H =𝒟H′.

Consider now ℋ=L2(ℝn, dx). 𝒜=Cb
0(ℝn,ℂ) and (Q0(a)h)(x)=a(x)h(x). Define

K(t)h=𝜌t ∗h= 1
(2𝜋t)n/2� e−|x−y|2/(2t)h(y)dy.

Theorem 4. (K(t))t⩾0 is a strongy continuous, self-adjoint contraction semigroup.

Proof. Let ℱ(h)=∫ℝn eikxh(x)dx the Fourier transform. Recall Plancherel's theorem

�
ℝn

h1(x)h2(x)dx = 1
(2𝜋)n�

ℝn
ℱ(h1)(k)ℱ(h2)(k)dk

and that ℱ(a∗b)=(ℱa)(ℱb). Moreover ℱ(𝜌t)(k)=exp(−t |k|2/2). Now

‖K(t)h‖L2
2 = 1

(2𝜋)n�
ℝn

|ℱ(𝜌t ∗h)(k)|2dk = 1
(2𝜋)n�

ℝn
exp(−t |k|2)|ℱ(h)(k)|2dk

⩽ 1
(2𝜋)n�

ℝn
|ℱ(h)(k)|2dk =‖h‖L2
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so K is a contraction. Moreover

‖K(t)h−h‖L2
2 = 1

(2𝜋)n�
ℝn

(1−exp(−t |k|2/2))2|ℱ(h)(k)|2dk →0

as t →0, so it is strongly continuous. Additionally it is self-adjoint since

⟨K(t)h1,h2⟩= 1
(2𝜋)n�

ℝn
exp(−t |k|2/2)2ℱ(h1)(k)ℱ(h2)(k)dk =⟨h1,K(t)h2⟩

and the semigroup property derives from

ℱ(K(t)K(s)h)(k)=exp(−t |k|2/2)exp(−s |k|2/2)ℱ(h)(k)=exp(−(t+s) |k|2/2)ℱ(h)(k)=ℱ(K(t+s)h)(k).
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□

Take f ∈C∞ ∩Lp for any p⩾1. Then in L2(ℝn) we have

lim
t↓0

ℱ�K(t) f − f
t �(k)=lim

t↓0

e−tk 2/2 −1
t ℱ( f )(k)=−k2ℱ( f )(k)=ℱ(Δ f )(k)

so H = −Δ and one can prove that 𝒟H = H2. Moreover ℰ(h, h) = ∫ℝn |∇h|2dx ⩾ 0. So the semigroup has
positive energy (it was already clear from the fact that it is a contraction).

So now

FK(t,h)=�
ℝ2n

e−|x−y|2/2t

(2𝜋t)n/2 h(x)h(y)dxdy

and for h∈L2 ∩L1 we have the explicit representation

FU(s,h)=FK(is,h)=�
ℝ2n

e−|x−y|2/2(is)

(2𝜋is)n/2 h(x)h(y)dxdy

where (i)n/2=e𝜋in/4 given the kind of limit we had to perform. We conclude therefore that for h∈L2 ∩L1

(U(s)h)(x)=�
ℝn

e−|x−y|2/2(is)

(2𝜋is)n/2 h(y)dy.

This is the model of the free particle in ℝn, i.e. a particle not interacting with any external system. In this
case (U(t))t∈ℝ is a unitary group on L2(ℝn) and the expectation of any observable Qt(a) on the state 𝜔h

evolves according to the equation

𝜔t
h(a)=⟨Qt(a)h,h⟩= ⟨U(−t)Q0(a)U(t)h,h⟩= ⟨Q0(a)U(t)h,U(t)h⟩.

Definition 5. Assume that U has positive energy, we say that h0∈ℋ is a ground state for U iff U(t)h0=h0.

Theorem 6. h0 is a ground state for U iff one of the following equivalent conditions hold:

1. 𝜇h0(dx)=𝛿0(dx)

2. K(t)h0 =h0

3. h0 ∈𝒟H and Hh0 =0

4. h0 ∈𝒟H and ℰ(h0,h0)=0

Proof. Exercise. □

Remark 7. The name ground state comes from the fact that h0 is the state of minimal energy of the system
(i.e. the zero energy, in our normalization).

Definition 8. h0 a cyclic ground state if span{U(t1)Q0(a1)U(t2)Q0(a2)⋅ ⋅ ⋅h0} is dense in ℋ.
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A cyclic ground state allows to reconstruct all the Hilbert space from expectations of time evolutions of
observables.

Indeed any 𝜔h(Qt(a)) can then be approximated by linear combinations of expressions of the form

⟨Qt1(a1)⋅ ⋅ ⋅Qtn(an)h0,h0⟩

for suitable t1, . . . , tn since we used the fact that h0 is invariant under U.

Assume that we are given a cyclic ground state.

Wightman functions are defined as

𝕎k,𝔸k(t1, . . . , tk)=⟨Qt1(a1)⋅ ⋅ ⋅Qtn(an)h0,h0⟩

where 𝔸k =(a1, . . . ,ak)∈𝒜k.

Lemma 9. 𝕎k,𝔸k is invariant wrt. to time translations, namely

𝕎k,𝔸k(t1, . . . , tk)=𝕎k,𝔸k(t1+ s, . . . , tk + s)

for all s∈ℝ.

Proof. By invariance of the ground state we have

𝕎k,𝔸k(t1, . . . , tk)=⟨Qt1(a1)⋅ ⋅ ⋅Qtn(an)h0,h0⟩

=⟨Qt1(a1)⋅ ⋅ ⋅Qtn(an)U(s)h0,U(s)h0⟩

=⟨U(−s)Qt1(a1)U(s)U(−s)⋅ ⋅ ⋅U(−s)Qtn(an)U(s)h0,h0⟩

and since U(−s)Qt1(a)U(s)=Qt1+s(a) we have the result. □

We observe also that we can define the (reduced) function

Wk,𝔸k(𝜉1, . . . ,𝜉k−1)=𝕎k,𝔸k(t, t +𝜉1, . . . , tk +𝜉k−1)=⟨Q0(a1)U(𝜉1)Q0(a2)U(𝜉2)⋅ ⋅ ⋅Q0(ak)h0,h0⟩

for 𝜉1, . . . , 𝜉k1 ∈ℝ.
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