Lecture 22 -2020.7.1-8:30 via Zoom - F. de Vecchi
(Script by M. Gubinelli of the lecture of Francesco.)
In the last lecture we introduced the reduced Wightman functions $\left(W_{k, \mathbb{A}_{k}}\right)_{k}$ and show that they statisfy three basic properties
a) W 1 - compatibility condition (encodes the fact that Q_{0} is a C^{*}-representation and that U is a unitary group)
b) W2 - tempered distribution axiom (encodes the fact that U is strongly continuous with positive energy)
c) W3 - Hilbert space positivity (encodes the fact that the scalar product is Hermitian and positive)

Definition 1. Schwinger functions, $k \in \mathbb{N}$ and $\mathbb{A}_{k}=\left(a_{1}, \ldots, a_{k}\right) \in \mathscr{A}^{k}, t_{1}, \ldots, t_{k-1} \geqslant 0$ and let

$$
S_{k, \mathbb{A}_{k}}\left(t_{1}, \ldots, t_{k-1}\right)=\left\langle Q_{0}\left(a_{1}\right) K\left(t_{1}\right) Q_{0}\left(a_{2}\right) K\left(t_{2}\right) \cdots K\left(t_{k-1}\right) Q_{0}\left(a_{k}\right) h_{0}, h_{0}\right\rangle
$$

Recall that $\theta\left(\mathbb{A}_{k}\right)=\left(a_{k}^{*}, \ldots, a_{1}^{*}\right)$ and $\bar{\theta}\left(T_{k-1}\right)=\left(-t_{k-1},-t_{k-2}, \ldots,-t_{1}\right)$. We introduce now also another map on times as $\hat{\theta}\left(T_{k-1}\right)=\left(t_{k-1}, t_{k-2}, \ldots, t_{1}\right)$. We will need also the composition $\mathbb{A}_{k} \cdot \mathbb{A}_{k^{\prime}}^{\prime}=\left(a_{1}, \ldots, a_{k} a_{1}^{\prime}, \ldots a_{k^{\prime}}^{\prime}\right)$.

Definition 2. We say that the set of functions $\left(\tilde{S}_{k}: \mathscr{A}^{k} \times \mathbb{R}_{+}^{k-1} \rightarrow \mathbb{C}\right)_{k}$ satisfy the axiom $S 1$ (or compatibility condition)

1. $\tilde{S}_{k, \mathbb{A}_{k}}\left(t_{1}, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_{k-1}\right)=\tilde{S}_{k-1, \tilde{\mathbb{A}}_{k}}\left(t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{k-1}\right)$ where $\tilde{\mathbb{A}}_{k}=\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{k}\right)$ and

$$
\tilde{S}_{k,\left(a_{1}, \ldots, \lambda a_{i}+\mu b_{i}, \ldots, a_{k}\right)}\left(t_{1}, \ldots, t_{k-1}\right)=\lambda \tilde{S}_{k,\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)}\left(t_{1}, \ldots, t_{k-1}\right)+\mu \tilde{S}_{k,\left(a_{1}, \ldots, b_{i}, \ldots, a_{k}\right)}\left(t_{1}, \ldots, t_{k-1}\right)
$$

2. $\tilde{S}_{k,\left(a_{1}, \ldots a_{i-1}, 1, a_{i}, \ldots, a_{k}\right)}\left(t_{1}, \ldots, t_{k-1}\right)=\tilde{S}_{k-1, \mathbb{A}_{k-1}}\left(t_{1}, \ldots, t_{k-1}\right)$
3. $\overline{\tilde{S}_{k, \mathbb{A}_{k}}\left(T_{k-1}\right)}=\tilde{S}_{k, \theta\left(\mathbb{A}_{k}\right)}\left(\hat{\theta}\left(T_{k}\right)\right)$ which is due to the fact that $K(t)^{*}=K(t)$.

Lemma 3. The Schwinger functions satisfy Axiom S1

Let $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{k-1}\right)$ supported in $\mathbb{R}_{+}^{k-1}=\left(\mathbb{R}_{+}\right)^{k-1}$, i.e. $T(f)=T\left(f^{\prime}\right)$ when $f=f^{\prime}$ on \mathbb{R}_{+}^{k-1}, i.e. functions which behave on \mathbb{R}_{+}^{k-1} but arbitrarily elsewhere. For example $s \mapsto e^{-t s}$ belongs to $\mathscr{S}\left(\mathbb{R}_{+}\right)$and

$$
\left(s_{1}, \ldots, s_{k-1}\right) \mapsto e^{-t_{1} s_{1} \cdots-t_{k-1} s_{k-1}}
$$

is in $\mathscr{S}\left(\mathbb{R}_{+}^{k-1}\right)$. We define the Laplace transform $\mathscr{L}(T)=G\left(t_{1}, \ldots, t_{k-1}\right)$ as

$$
G\left(t_{1}, \ldots, t_{k-1}\right)=T\left(\left(s_{1}, \ldots, s_{k-1}\right) \mapsto e^{-t_{1} s_{1} \cdots-t_{k-1} s_{k-1}}\right)
$$

If $f \in L^{1}$

$$
\mathscr{L}(f)(t)=\int_{0}^{\infty} e^{-t s} f(s) \mathrm{d} s
$$

Definition 4. Let $\left(\tilde{S}_{k}\right)_{k}$ as before. We say that they satisfy Axiom $S 2$ (or that they are Laplace transform of a tempered distribution) if $\exists T_{k, \mathbb{A}_{k}}$ such that $\tilde{S}_{k, \mathbb{A}_{k}}=\mathscr{L}\left(T_{k, \mathbb{A}_{k}}\right)$ and for all $g_{1}, \ldots, g_{k-1} \in \mathscr{S}\left(\mathbb{R}_{+}\right)$

$$
\begin{equation*}
\left|\int_{\mathbb{R}_{+}^{k-1}} \tilde{S}_{k, \mathbb{A}_{k}}\left(t_{1}, \ldots, t_{k-1}\right) g\left(t_{1}\right) \cdots g_{k-1}\left(t_{k-1}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{k-1}\right| \leqslant \prod_{\ell=1}^{k-1}\left\|\mathscr{L} g_{\ell}\right\|_{L^{\infty}\left(\mathbb{R}_{+}\right)} \prod_{\ell=1}^{k-1}\left\|a_{k}\right\|_{\mathcal{A}} . \tag{1}
\end{equation*}
$$

Theorem 5. The inequality (1) implies that $\tilde{S}_{k, \mathbb{A}_{k}}$ is the Laplace transform of a distribution.

Proof. For a proof see the book of B. Simon "The $P(\varphi)_{2}$ Euclidean Quantum Field Theory", Chap. 2 Sect. 2.2.

Lemma 6. The Schwinger functions, satisfy Axiom S2.

Proof. Similar to the analogous statement for Wightman functions. The essential step is to observe that

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{k-1}} S_{k, \mathbb{A}_{k}}\left(t_{1}, \ldots, t_{k-1}\right) g\left(t_{1}\right) \cdots g_{k-1}\left(t_{k-1}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{k-1} \\
& \quad=\left\langle Q_{0}\left(a_{1}\right) X_{K}\left(\mathscr{L} g_{1}\right) \cdots X_{K}\left(\mathscr{L} g_{k-1}\right) Q_{0}\left(a_{k}\right) h_{0}, h_{0}\right\rangle
\end{aligned}
$$

where X_{K} is the homomorphism generated by K as we introduced few lectures ago.

Remark 7. We proved that $S_{k, \mathbb{A}_{k}}=\mathscr{L}\left(T_{k, \mathbb{A}_{k}}\right)$, moreover $T_{k, \mathbb{A}_{k}}$ for $k=2$ is a measure (easy to see) from the definition. For $k>2$ is not a measure but a poly-measure (i.e. is a measure in each components, but not jointly).

Remark 8. We have that the reduced Schwinger functions $S_{k, \mathbb{A}_{k}}$ are holomorphic in $\left\{\operatorname{Re}\left(t_{i}\right)>0: i=1, \ldots\right.$, $k\} \subset \mathbb{C}^{k}$ and continuous in $\left\{\operatorname{Re}\left(t_{i}\right) \geqslant 0: i=1, \ldots, k\right\}$, moreover we have

$$
W_{k, \mathbb{A}_{k}}\left(s_{1}, \ldots, s_{k-1}\right)=S_{k, \mathbb{A}_{k}}\left(i s_{1}, \ldots, i s_{k-1}\right)
$$

where the r.h.s is defined as the limit

$$
S_{k, \mathbb{A}_{k}}\left(i s_{1}, \ldots, \text { is }_{k-1}\right)=\lim _{\lambda_{1}, \ldots, \lambda_{k-1} \rightarrow 0+} S_{k, \mathbb{A}_{k}}\left(\lambda_{1}+i s_{1}, \ldots, \lambda_{k-1}+i s_{k-1}\right) .
$$

This follows directly from the fact that $S_{k, \mathbb{A}_{k}}$ is the Laplace transform of a tempered distribution supported on \mathbb{R}_{+}^{k-1}.

Definition 9. Let $\left(\tilde{S}_{k}\right)_{k}$ as before. They satisfy Axiom $S 3$ (or reflection positivity) if for $k \in \mathbb{N}, j_{1}, \ldots, j_{k} \in \mathbb{N}$ and $T_{n-1, j}=\left(t_{1,(n-1, j)}, \ldots, t_{n-1,(n-1, j)}\right) \in \mathbb{R}_{+}^{n-1}$ and $\lambda_{n, j} \in \mathbb{C}\left(n \leqslant k\right.$ on $\left.j \leqslant j_{n}\right)$

$$
\sum_{n_{1}, n_{2}=1}^{k} \sum_{h_{1}=1}^{j_{n_{1}}} \sum_{h_{2}=1}^{j_{n_{2}}} \lambda_{n_{1}, h_{1}} \overline{\lambda_{n_{2}, h_{2}}} S_{n_{1}+n_{2}-1, \theta\left(\mathbb{A}_{n_{2}, h_{2}}\right) \cdot \mathbb{A}_{n_{1}, h_{1}}}\left(\hat{\theta}\left(T_{n_{2}-1, h_{2}}\right), T_{n_{1}-1, h_{1}}\right) \geqslant 0
$$

This property derives from the fact that the Hilbert scalar product is Hermitian and positive definite, that Q_{0} is a representation and that K is self-adjoint (which is linked with the form of $\hat{\theta}$).

Lemma 10. The Schwinger functions satisfy Axiom S3.

Now the important result, the reconstruction theorem.

Theorem 11. Assume that $\left(\tilde{S}_{k, \mathbb{A}_{k}}\right)_{k}$ satisfy Axioms $S 1, S 2, S 3$. The there exists $\left(\mathscr{H}, Q_{0},(K(t))_{t}, h_{0}\right)$ such that $\left(\tilde{S}_{k, \mathbb{A}_{k}}\right)_{k}$ are the Schwinger functions generated by $\left(\mathscr{H}, Q_{0},(K(t))_{t}, h_{0}\right)$.

Remark 12. An analogous theorem holds for families $\left(\tilde{W}_{k, \mathbb{A}_{k}}\right)_{k}$ satisfying W1,W2,W3, from which one can construct data $\left(\mathscr{H}, Q_{0},(U(t))_{t}, h_{0}\right)$ for which they are the Wightman functions.

Proof. Let \mathscr{F} be the free algebra generated by the symbols $\tilde{Q}_{0}(a)$ and $\tilde{K}(t)$ where $a \in \mathscr{A}$ and $t \in \mathbb{R}_{+}$ equipped with the relations
i. $\quad \tilde{Q}_{0}(a) \tilde{Q}_{0}(b)=\tilde{Q}_{0}(a b), \lambda \tilde{Q}_{0}(a)+\mu \tilde{Q}_{0}(b)=\tilde{Q}_{0}(\lambda a+\mu b)$ for $a, b \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{C}$
ii. $\tilde{Q}_{0}\left(1_{\mathscr{A}}\right)=1_{\mathscr{F}}$
iii. $\tilde{K}\left(t_{1}\right) \tilde{K}\left(t_{2}\right)=\tilde{K}\left(t_{1}+t_{2}\right)$
iv. $\tilde{K}(0)=1_{\mathscr{F}}$

By definition \mathscr{F} is the complex vector space generated by the words of the form $\tilde{Q}_{0}(a) \tilde{Q}_{0}(b) \tilde{K}(t) \cdots \tilde{Q}_{0}(c) \tilde{K}\left(t^{\prime}\right)$ which then is extended to an algebra by justapposition of the linear generators and then we take the quotient wrt. the relations listed above. Introduce a useful notation: if $T_{k-1}=$ $\left(t_{1}, \ldots, t_{k-1}\right) \in \mathbb{R}_{+}^{k-1}$ and $\mathbb{A}_{k}=\left(a_{1}, \ldots, a_{k}\right) \in \mathscr{A}^{k}$, we call $\mathbb{F}_{k}\left(T_{k-1}, \mathbb{A}_{k}\right)=\tilde{Q}_{0}\left(a_{1}\right) \tilde{K}\left(t_{1}\right) \cdots \tilde{K}\left(t_{k-1}\right) \tilde{Q}_{0}\left(a_{k}\right) \in$ \mathscr{F}. Using the previous relations we have that if $A \in \mathscr{F}$ then

$$
A=\sum_{n=1}^{k} \sum_{h=1}^{j_{n}} \lambda_{n, h} \mathbb{F}_{n}\left(T_{n-1, h}, \mathbb{A}_{n-1, h}\right)
$$

for some $\lambda_{n, h}, T_{n-1, h}, \mathbb{A}_{n-1, h}$ (in general not in a unique way). On \mathscr{F} we define the scalar product $\langle *, *\rangle_{\mathscr{F}}$ by

$$
\left\langle\mathbb{F}_{k}\left(T_{k-1}, \mathbb{A}_{k}\right), \mathbb{F}_{k^{\prime}}\left(T_{k^{\prime}-1}^{\prime}, \mathbb{A}_{k}^{\prime}\right)\right\rangle_{\mathscr{F}}=\tilde{S}_{k+k^{\prime}-1, \theta\left(\mathbb{A}_{k^{\prime}}\right) \cdot \mathbb{A}_{k}}\left(\hat{\theta}\left(T_{k^{\prime}-1}^{\prime}\right), T_{k-1}\right)
$$

and extend it by linearity to all \mathscr{F} in the first component and by antilinearity in the second component. This definition is well posed since $\left(\tilde{S}_{k, \mathbb{A}_{k}}\right)_{k}$ satisfy the compatibility conditions of Axiom S 1 and moreover by the last of the property in Axiom S1 we have that the form $\langle *, *\rangle_{\mathscr{F}}$ is Hermitian and for Axiom S3 that this scalar product is positive definite. We define the linear subspace $\mathcal{N}=\left\{A \in \mathscr{F},\langle A, A\rangle_{\mathscr{F}}=0\right\}$ and we define $\mathscr{H}_{0}=\mathscr{F} \backslash \mathcal{N}$ as a vector space. On \mathscr{H}_{0} we define $\langle[A],[B]\rangle_{\mathscr{G}}=\langle A, B\rangle_{\mathscr{F}}$ which is well defined by the Cauchy-Schwartz inequality and where $[A] \in \mathscr{H}_{0}$ denotes the class of $A \in \mathscr{F}$. Moreover we let \mathscr{H} the completion of \mathscr{A}_{0} with respect to this non-degenerate scalar product $\langle,\rangle_{\mathscr{G}}$ (which is stricly positive on $\left.\mathscr{C}_{0}-\{0\}\right)$. We let $h_{0}=\left[1_{\mathscr{F}}\right]$. We define $\mathbb{K}_{t}: \mathscr{F} \rightarrow \mathscr{F}$ linear such that

$$
\mathbb{K}_{t}\left(\mathbb{F}_{k}\left(T_{k-1}, \mathbb{A}_{k}\right)\right):=\tilde{K}(t) \mathbb{F}_{k}\left(T_{k-1}, \mathbb{A}_{k}\right)=\mathbb{F}_{k+1}\left(\left(t, T_{k-1}\right),\left(1_{\nrightarrow}, \mathbb{A}_{k}\right)\right) .
$$

We have that $\mathbb{K}_{t} \mathbb{K}_{s}=\mathbb{K}_{t+s}$ and $\mathbb{K}_{0}=1$. Moreover \mathbb{K}_{t} is symmetric wrt. the scalar product on \mathscr{F} (this is a consequence of Axiom S1), indeed

$$
\begin{gathered}
\left\langle\mathbb{K}_{t}\left(\mathbb{F}_{k}\left(\mathbb{T}_{k-1}, \mathbb{A}_{k}\right)\right), \mathbb{F}_{h}\left(T_{h-1}^{\prime}, \mathbb{A}_{h}\right)\right\rangle=\left\langle\mathbb{F}_{k+1}\left(\left(t, T_{k-1}\right),\left(1_{\mathscr{A}}, \mathbb{A}_{k}\right)\right), \mathbb{F}_{h}\left(T_{h-1}^{\prime}, \mathbb{A}_{h}\right)\right\rangle \\
=S_{k+h-1, \theta\left(\mathbb{A}_{h}^{\prime}\right)\left(1_{\beta}, \mathbb{A}_{k}\right)}\left(\hat{\theta}\left(T_{h-1}^{\prime}\right),\left(t, T_{k-1}\right)\right)=S_{k+h-1, \theta\left(\left(1_{\mathscr{A}}, \mathbb{A}_{h}^{\prime}\right)\right)} \mathbb{A}_{k}\left(\hat{\theta}\left(t, T_{h-1}^{\prime}\right), T_{k-1}\right) \\
=\left\langle\mathbb{F}_{k}\left(\mathbb{T}_{k-1}, \mathbb{A}_{k}\right), \mathbb{K}_{t} \mathbb{F}_{h}\left(T_{h-1}^{\prime}, \mathbb{A}_{h}\right)\right\rangle
\end{gathered}
$$

and this extends by linearity to deduce the symmetry for \mathbb{K}_{t}. (We continue next week)

