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Lecture 24 – 2020.7.8 – 8:30 via Zoom – F. de Vecchi

(Script by M. Gubinelli of the lecture of Francesco.)

In the last lecture we started to see a method to construct Schwinger functions starting from a stochastic
process. We took the Ornstein–Uhlenbeck process, i.e. the real (one-dimensional) Gaussian process on ℝ
with meaan zero and covariance

Cov(Xt,Xs)=𝔼[XtXs]=R(t − s)= 1
2𝜃e−𝜃|t−s|, t, s∈ℝ

for a given parameter 𝜃>0. We took 𝒜=Cb
0(ℝ) and we took a candidate extended Schwinger function of

the form

𝒮̃k,𝔸k(𝜉1, . . . , 𝜉k)=𝔼[a1(X𝜉1)⋅ ⋅ ⋅ak(X𝜉k)]

where 𝜉1⩽⋅⋅⋅⩽𝜉k and then extended symmetrically to all ℝk. We proved that the functions (𝒮̃k,⋅)k satisfy
Axioms S0,S1,S2. We also introduced the notation F ∈Ccyl

0 (ℝℝ+,ℂ) for cylindric function, i.e. functions
such that there exists k ⩾0 and F̃: ℝk → ℂ and 𝜉1, . . . , 𝜉k such that F(X) = F̃(X𝜉1, . . . , X𝜉k). We introduced
also ℝ(X)t =X−t. We proved the following equivalent characterisation of S3:

Theorem 1. (𝒮̃k,⋅)k satisfies S3 iff for all F ∈Ccyl
0 (ℝℝ+,ℂ) we have

𝔼[F(X)F(ℝ(X))]⩾0.

Definition 2. A process X̃ such that for all F ∈ Ccyl
0 (ℝℝ+,ℂ) we have 𝔼[F(X)F(ℝ(X))] ⩾ 0 it is called a

reflection positive process.

Lemma 3. Consider (Y1,Y2) taking values in ℝn1 ×ℝn2 which are Gaussian random variables with covari-
ance

Cov(Y)=((((((( B11 B12
B21 B22 )))))))

with Bi, j = Cov(Yi, Yj). Then Y1 given Y2 is a Gaussian random variable and the conditional covariance is
given by

Cov(𝔼(Y1|Y2))=B11 −B12B22
−1B21

we are assuming that B22 is non-singular.

Proof. Exercise. □

Lemma 4. If 𝜂1, . . . , 𝜂h ⩾ 0 and 𝜉1, . . . , 𝜉k ⩾ 0 then Y1 = (X−𝜂1, . . . , X−𝜂h) is conditionally independent of
Y2 =(X𝜉1, . . . ,X𝜉k) given X0, where X is the OU process above.

Proof. We have by simple inspection

Cov((Y1,Y2,X0))=(((((((((((((((((
(((((((
(
( C1 B1

T D1
T

B1 C2 D2
T

D1 D2 1/2𝜃 )))))))))))))))))
)))))))
)
)
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with

D1=((((((((((e−𝜃𝜂1

2𝜃 , . . . , e−𝜃𝜂h

2𝜃 )))))))))), D2=((((((((((e−𝜃𝜉1

2𝜃 , . . . , e−𝜃𝜉k

2𝜃 ))))))))))
and

(B1)i, j =
e−𝜃(𝜂i+𝜉j)

2𝜃 .

So

Cov((Y1,Y2)|X0)=(((((((((( C1 B1
T

B1 C2 ))))))))))− (2𝜃)(D1,D2)T(D1,D2)

with

(D1,D2)T(D1,D2)=((((((((((((((
D̃1 B1

T

B1 D̃2 ))))))))))))))
so finally one has

Cov((Y1,Y2)|X0)=((((((((((((((
C̃1 0
0 C̃2 ))))))))))))))

for some matrices C̃1, C̃2. The important observation is that the antidiagonal is zero. (check as exercise).
From this form of the covariance this implies that Y1,Y2 are independent given X0. □

We are going now to prove

Theorem 5. The OU process X is reflection positive.

Proof. Take F ∈ Ccyl
0 (ℝℝ+, ℂ), so F = F̃(X𝜉1, . . . , X𝜉k) with 𝜉1, . . . , 𝜉k ⩾ 0 as above. By the conditional

independence (annd the complex-linearity of the expectation) we have

𝔼[F(X)F(ℝ(X))]=𝔼[𝔼[F(X)F(ℝ(X))|X0]]

=𝔼[𝔼[F(X)|X0]𝔼[F(ℝ(X))|X0]]

Now we observe that X is invariant wrt. reflections so

𝔼[F(ℝ(X))|X0]=𝔼[F(ℝ(X))|ℝ(X0)]=𝔼[F(X)|X0]

and we obtain

𝔼[F(X)F(ℝ(X))]=𝔼[|𝔼[F(X)|X0]|2]⩾0. □

As a consequence we obtain that (𝒮̃k)k satisfy axioms S0,S1,S2,S3 and by the reconstruction theorem there
exists (ℋ,Q0, (K(t))t⩾0,h0) such that (𝒮̃k)k are the associated extended Schwinger functions.

Now we are interested in explicitly describing these objects in this particular situation.

In this case we can prove that the free algebra ℱ introduced in the reconstruction is isomorphic to the
algebra ℱX ⊆Cc

0(ℝℝ+,ℂ) by identifying

Q̃0(a0)K̃(t1)Q̃0(a1)⋅ ⋅ ⋅K̃(tk−1)Q̃0(ak)
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with

a0(X0)a1(Xt1)⋅ ⋅ ⋅ak(Xt1+⋅ ⋅ ⋅+tk−1)

and extending this map by linearity. We leave as an exercise to prove the isomorphism (as algebras).
Under this ispomorphis if F, G ∈ ℱX then we also have that the Hermitian form ⟨⟩ℱ can be represented
probabilistically as

⟨F,G⟩ℱX =𝔼[F(X)G(ℝ(X))]

which we know to be non-negative and Hermitian. Let 𝒩X ≔{F ∈ℱX|⟨F,F⟩ℱX =0}⊆ℱX

Remark 6. If F ∈ ℱX then there exists a version 𝔼[F|X0] which belongs to ℱX, indeed the conditional
expectation can be written as 𝔼[F|X0]=F(LF X0) for soem linear map LF depending on F

Lemma 7. We have

F −𝔼[F|X0]∈𝒩X

Proof. Observe that

𝔼[(F −𝔼[F|X0])(F(ℝ(X))−𝔼[F|X0])]

=𝔼[𝔼[(F −𝔼[F|X0])(F(ℝ(X))−𝔼[F|X0])|X0]]

=𝔼[𝔼[(F −𝔼[F|X0])|X0][(F(ℝ(X))−𝔼[F|X0])|X0]]=0

since clearly 𝔼[(F −𝔼[F|X0])|X0]=0. □

So from an algebraic point of view we have that ℋ̂=ℱX\𝒩X is just Cb
0(ℝ,ℂ) where the map ℱX →ℋ̂ is

just the conditional expectation F ↦𝔼[F|X0]. That ℋ̂ =Cb
0(ℝ,ℂ) is clear since 𝔼[a0(X0)|X0] =a0(X0) so

it is a surjective mapping. Moreover the scalar product can be written

⟨ f ,g⟩ℋ̂ =𝔼[ f (X0)g(X0)]=�
ℝ

f (z)g(z) e−𝜃z2/2

(2𝜋/𝜃)1/2dz|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
𝜇𝜃(dz)

and as a consequence ℋ=L2(ℝ,ℂ,𝜇𝜃) moreover (Q0(a) f )(z)=a(z) f (z). Recall now that 𝕂(t)F = K̃(t)A
which under our isomorphism it is send to a translation of the time variable:

𝕂(t)F(X)=F(Xt+⋅).

In particular 𝕂(t) f (X0)= f (Xt) and we have

(K(t) f )(X0)=𝔼[𝕂(t) f (X0)|X0]=𝔼[ f (Xt)|X0]

This conditional expectation can be written explicitly since Cov(Xt,X0)=(2𝜃)e−𝜃t and so

Xt =e−𝜃tX0+(1−e−2𝜃t)1/2N𝜃

where N𝜃 ∼𝒩(0,1/2𝜃) and it is independent of X0, then

K(t) f (z)=𝔼[ f (Xt)|X0= z]=𝔼[ f (e−𝜃tz +(1−e−2𝜃t)1/2N𝜃)]=�
ℝ

f (e−𝜃tz +(1−e−2𝜃t)1/2y)𝜇𝜃(dy).
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Obviously h0 =1∈L2(ℝ,ℂ,𝜇𝜃). From the explicit expression of (K(t))t⩾0 one can check again that it is a
stronly continuous contraction semigroup. This is called the Ornstein–Uhlenbeck semigroup.

This is not what is done usually in quantum mechanics since the usual space there is taken to be L2(ℝ,𝜆)
where 𝜆 is the Lebesgue measure, not 𝜇𝜃. The map connecting the two representations is

f ∈ℋ̂→ f̃ (z)= f (z) e−𝜃z2/4

(2𝜋/𝜃)1/4 ∈ℋ̃=L2(ℝ,𝜆)

Let's compute the generator H of K(t):

−Hf (z)=lim
t→0

K(t) f (z)− f (z)
t =lim

t→0
�

ℝ

f (e−𝜃tz +(1−e−2𝜃t)1/2y)− f (z)
t 𝜇𝜃(dy)

By Taylor expansion:

=lim
t→0

�
ℝ

f ′(z)((e−𝜃t −1)z +(1−e−2𝜃t)1/2y)+ 1
2 f ′′(z)((e−𝜃t −1)z +(1−e−2𝜃t)1/2y)2+O(t3/2)

t 𝜇𝜃(dy)

and since 𝜇𝜃 has zero first moment we have

=lim
t→0

�
ℝ

f ′(z)(e−𝜃t −1)z + 1
2 f ′′(z)((1−e−2𝜃t)1/2y)2 +O(t3/2)

t 𝜇𝜃(dy)

=lim
t→0

f ′(z)(−𝜃t)z + 1
2 f ′′(z)(1−e−2𝜃t)(1/2𝜃)+O(t3/2)

t =−𝜃f ′(z)+ 1
4 f ′′(z)

so on ℋ̂ we have

Hf (z)=𝜃f ′(z)− 1
4 f ′′(z)

and the same operator on ℋ̃ has the form

H̃f (z)=−𝜃z2 f̃ (z)− 1
4Δ f̃ (z)

and this is usually called the Schrödinger representation of the harmonic oscillator, indeed note that

H̃ = 1
4P2 +Q2𝜃2
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which if interpreted classically is the Hamiltonian of the harmonic oscillator.

Therefore we have proven that the quantum mechanical harmonic oscillator is related via the reconstruction
theorem with the Ornstein–Uhlenbeck process.

Next time we will take a state space M and a stochastic process (Xt)t∈ℝ taking values in M and take 𝒜 a
subset of the continuous functions on M large enough (so that 𝒜 characterise the measures on M) and we
defined the Schwinger functions as before, i.e. as

𝒮k,𝔸k(𝜉1, . . . , 𝜉k)=𝔼[a1(X𝜉1)⋅ ⋅ ⋅ak(X𝜉k)]

and the properties S0,S1,S2,S3 become suitable probabilistic properties of (Xt)t∈ℝ. We will see what are
exaclty there probabilistic properties (invariance, continuity in disitrbuion, and reflection positivity). We
are then going to characterise some classes of processes which have these properties (and therefore which
give rise to quantum mechanical dynamics).

Why it is simpler to use this strategy (to construct QM models): essentially because probabilistic tools are
usually easier to use/more powerful than functional analityc tools in Hilbert spaces. So the probabilistic
model should be considered a special and versatile representation of a quantum system.
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