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(Script by M. Gubinelli of the lecture of Francesco.)

In the last lecture we introduced four axioms for functions

𝒮k,𝔸k(𝜉1, . . . , 𝜉k)=Sk,𝔸k(𝜉2−𝜉1, . . . , 𝜉k −𝜉k−1)=Sk,𝔸k(t1, . . . , tk−1)

Axioms:

S0. Linearity in a∈𝒜

S1. Compatibility conditions

S2. Laplace transform of a positively supported distribution

S2'. Boundedness and continuity in t

S3. Reflection positivity.

We have proven that

(S0,S1,S2,S3)⇔(S0,S1,S2′,S3)

and that they are equivalent to the existence of the data of a quantum system with ground state (I do not
repreat here the formulation).

Last week we introduced a stochastic process and showed that it can be used to define Schwinger functions
satisfying the above Axioms.

We want now to generalise this setting. We consider now 𝒜⊂Cb
0(M) where M is topological space.

We introduce now Axiom N (Nelson positivity).

Definition 1. A family (Sk)k is Nelson positive is for all t1, . . . , tk−1 ∈ ℝ+ there exists 𝜇t1, . . . ,tk−1 a Radon
probability measure on M k such that

Sk,(a1, . . . ,ak)(t1, . . . , tk−1)=�
Mk

a1(x1)⋅ ⋅ ⋅ak(xk)𝜇t1, . . . ,tk−1(dx1⋅ ⋅ ⋅dxk)

Remark 2. In particular, if a1, . . . ,ak ⩾0 in 𝒜 i.e. ai =bibi
∗ then

Sk,(a1, . . . ,ak)(t1, . . . , tk−1)=�
Mk

|b1(x1)⋅ ⋅ ⋅bk(xk)|2𝜇t1, . . . ,tk−1(dx1⋅ ⋅ ⋅dxk)⩾0.

This justify the name of positivity.

On M we need to assume also that

(*). 𝒜⊗k (the linear combination of functions of the form a1(x1)⋅ ⋅ ⋅ak(xk)) generates Cb
0(M k; ℂ) with

respect to the topology of pointwise convergence with uniform bounds.

For example, this holds, if M =ℝm and 𝒜 is the space of continuous functions vanishing at ∞ on M,
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Theorem 3. (Sk)k satisfy Axioms (N, S1, S2, S3) is equivalent to the existence of a stochastic process X:
Ω×ℝ→M such that

1.

𝒮k,𝔸k(𝜉1, . . . ,𝜉k)=𝔼[a1(X𝜉1)⋅ ⋅ ⋅ak(X𝜉k)]

2. (X𝜉1, . . . ,X𝜉i, . . . ,X𝜉k)→(X𝜉1, . . . ,X𝜉, . . . ,X𝜉k) in law as 𝜉i→𝜉∈ℝ.

3. For any s ∈ ℝ we have that (Xs+t)t∈ℝ has the same law of X, i.e. the law of X is invariant under
translation

4. Recall that ℝ(X)t =X−t and that F ∈Ccyl
0 (ℝℝ+;ℂ) with F(X)= F̃(X𝜉1, . . . ,X𝜉k), then we have that

𝔼[F(X)F(ℝ(X))]⩾0,

i.e. the process X is reflection positive.

Proof. The direction ⇐ is the same in the case M = ℝ and X the OU process, we did in the last lectures.
The reverse direction ⇒ goes as follows. If there exists a process satisfying condition 1 using the technical
hypothesis (∗) we can prove 2,3,4. Indeed if 𝒮 satisfies Axiom S0,S1,S2,S3 the process X satisfies 4 for
F =∑m 𝜆ma1,m(x1)⋅ ⋅ ⋅ak,m(xk) but by (∗) the functions of this form are dense in Ccyl

0 (Mℝ+,ℂ) with respect
to the pointwise convergence with uniform bounds so 4 follows from dominated convergence theorem. For
2 we do the the case involving only one function:

𝒮1,(a1)(𝜉1)=𝔼[a1(X𝜉1)]

but S2′ implies lim𝜉1→𝜉𝒮1,(a1)(𝜉1) = 𝒮1,(a1)(𝜉) = 𝔼[a1(X𝜉)] but they are dense in Cb
0(M, ℂ) and one can

argument the convergence in law. For 3 one uses the fact that the function are invariant under translations
and (∗). It remains now to prove 1, i.e. the existence of such a process. By N we have that

Sk,(a1, . . . ,ak)(t1, . . . , tk−1)=�
Mk

a1(y1)⋅ ⋅ ⋅ak(yk)𝜇t1, . . . ,tk−1(dy1⋅ ⋅ ⋅dyk)

for some Radon probability measure 𝜇t1, . . . ,tk−1. We consider the process (X𝜉)𝜉 with marginals given by
𝜇t1, . . . ,tk−1. The law of X is unique (if exists) because of (∗). By Axiom S1 (compatibility conditions), in
particular the fact that 𝒮k,(a1, . . . ,ai−1,1,ai+1, . . . ak)(𝜉1, . . . ,𝜉k)=𝒮k−1,(a1, . . . ,ai−1,ai+1, . . .ak)�𝜉1, . . . ,𝜉i, . . . , 𝜉k� and this
implies that (𝜇Tk)Tk are a compatible family of finite dimensional marginals, and by Kolmogorov's extension
theorem there exists a probability measure ℙ on Ω= Mℝ witth the product 𝜎-algebra and with marginals
given by 𝜇𝜉1, . . . ,𝜉k. So we can take on Ω the process X:Mℝ×ℝ→M given by X(𝜔)(t)=𝜔(t). □

The most difficult of the conditions is the reflection positivity. There is no “easy” way to check for it, how-
ever is a quite robust property which pass easily to the limit. In this second property it lies its usefulness.

Situations in which one can check easily for reflection positivity are two. The first is when dealing with
Gaussian processes, then second in when dealing with Markov processes.

We focus today on the Gaussian case. Let M = ℝm and 𝒜 = Cb
0(M; ℂ) and Xt a Gaussian process taking

values in ℝm with mean zero. For 𝛼 ∈ ℝm we can define 𝛼 ⋅ Xt = ∑ 𝛼iXt
i. A Gaussian process is uniquely

characterised by its covariance function

r ij(t, s)=𝔼[Xt
iXs

j].

If X satisfies condition 3 then we have that r ij(t, s) is only a function of t − s, i.e. r ij(t, s) = r ij(t − s). The
continuity in distribution is equivalent to require that t↦r i, j(t) is continuous. This can be verified using the
characteristic function (exercise). What about reflection positivity?
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Theorem 4. If X is a reflection positive process then for all 𝛼1, . . . ,𝛼k ∈ℂ and 𝜉1, . . . ,𝜉k ∈ℝ we have

�
i, j=1

k

⟨𝛼i, r(𝜉i+𝜉j)�̄�j⟩ℝm ⩾0. (1)

Proof. We prove in the scalar case m = 1 and M = ℝ, the general case follows similarly. We consider
fn ∈𝒜→ x in ℝ and such that | f (x)|⩽ |x|, e.g. fn(x)=(−n)∨(x ∧n). Let Fn(x)=∑i 𝛼ifn(X𝜉i), then

0⩽𝔼[Fn(X)Fn(ℝ(X))]= �
i, j=1

k

𝛼i𝛼j¯ 𝔼[ fn(X𝜉i) fn(X−𝜉j)]→ �
i, j=1

k

⟨𝛼i, r(𝜉i +𝜉j)�̄�j⟩ℝm

by Lebesgue dominated convergence theorem. □

Theorem 5. (Wick's theorem) Let (Y1, . . . , Yk) be a centred Gaussian vector, then for r even and i1, . . . , ir
chosen among {1, . . . ,k} we have

𝔼[Yi1⋅ ⋅ ⋅Yir]= �
{(i, j)}

�
(i, j)∈{(i, j)}

𝔼[YiYj]

where {(i, j)} run over the perfect matches of {i1, . . . , ir}. If r is odd then the expectation is zero.

Proof. Let Σi, j =𝔼[Yi,Yj] and we have that the moment generating function is given by

𝔼[e𝛼⋅Y]=e
1
2⟨𝛼,Σ𝛼⟩

then

𝔼[Yi1⋅ ⋅ ⋅Yir]= ∂r

∂𝛼i1⋅ ⋅ ⋅∂𝛼ir
�
𝛼=0

𝔼[e𝛼⋅Y]= ⋅ ⋅ ⋅ = �
{(i, j)}

�
(i, j)∈{(i, j)}

𝔼[YiYj].

□

Lemma 6. Let (Y1, . . . , Yk) be Gaussian with mean zero, then there are polynomials pN(x) ∈ C0(ℝk, ℝ)
indexed by N ={i1, . . . , ir} with r even or odd of the form

pN(x)=xi1⋅ ⋅ ⋅xir − �
M:M<N

cMpM(x)

where M is of degree less then N. These polynomials are orthogonal wrt. the Gaussian measure, i.e.

𝔼[pN(Y)pM(Y)]=0

for deg(N)≠deg(M).

Proof. If the covariance matrix Σ is non-singular we apply a form Gram–Schmidt orthogonalisation. For
Σ general we can find a subset of the Gaussians whose covariance is non-singular and express the rest of
the random variables by linear combinations of this subset and use the previous method. □

Theorem 7. Given eq.(1) + 1. + 2. then X is reflection positive.

Proof. (to be done tomorrow) □
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