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Note that in the last lecture we had

r(t − s)=𝔼[Xt Xs]= r(s− t)

so in particular r(t)= r(|t|).

The lemma on orthogonal polinomials holds actually for any random variable (for which polinomials are
integrable). In the Gaussian case we can prove that the polynomial depends only on the variables we are
considering. Let us give here the version of the lemma that we are going to actually use.

Lemma 1. Let (Y1, .. .,Yk) in ℝk be Gaussian random variables. Use N ={i1, .. . , ir} for multiindices. There
exists polynomials pN(yi1, . . . ,yir) such that

pN(yi1, . . . , yir)=yi1⋅ ⋅ ⋅yir + lower order polynomial.

and

𝔼[pN(Yi1, . . . ,Yir)pN ′(Yi1′, . . . ,Yir ′′ )]=0

if r≠r′. Moreover introducing the notion of Wick product we have: the Wick product is :Yi1⋅⋅⋅Yir:=pN(Yi1,...,
Yir) which is characterised by the properties

∂
∂Yij

:Yi1⋅ ⋅ ⋅Yir:=:Yi1⋅ ⋅ ⋅Yij⋅ ⋅ ⋅Yir:, 𝔼[:Yi1⋅ ⋅ ⋅Yir: ]=0.

Note that :Yi:=Yi.

Proof. The proof is based on Wick's theorem. If Q1,Q2 are two polynomials Q1(Yi1,...,Yir) and Q2(Yj1,...,Yjℓ)
then

𝔼[Q1(Yi1, . . . ,Yir)Q2(Yj1, . . . ,Yjℓ)]=�
p,q

𝔼[YipYjq]𝔼[[[[[[[[[[(((((((((( ∂
∂Yip

Q1(Yi1, . . . ,Yir)))))))))))(((((((((( ∂
∂Yjq

Q2(Yj1, . . . ,Yjℓ)))))))))))]]]]]]]]]]

which can be proven by integration by parts on monomials and then extended by linearity. We want to
prove now that

𝔼[:Yi1⋅ ⋅ ⋅Yir::Yj1⋅ ⋅ ⋅Yjℓ: ]=0

for r ≠ℓ. The proof is by induction on r +ℓ, when r +ℓ=1 we have 𝔼[:Yi: ]=𝔼[Yi]=0. Otherwise we use
the above formula to have

𝔼[:Yi1⋅ ⋅ ⋅Yir::Yj1⋅ ⋅ ⋅Yjℓ: ]=�
p,q

𝔼[YipYjq]𝔼�:Yi1⋅ ⋅ ⋅Yip⋅ ⋅ ⋅Yir::Yj1⋅ ⋅ ⋅Yjq⋅ ⋅ ⋅Yjℓ: �=0

using the induction hypothesis. □

Theorem 2. Assume that the covariance r satisfies

�
i, j=1

k

⟨𝛼i, r(ti+ tj)𝛼̄j⟩ℝm ⩾0. (1)
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for all 𝛼i∈ℂ and ti ∈ℝ. Then X is a reflection positive process.

Proof. The first step is to prove that reflection positivity holds for polynomials and then extended to arbi-
trary functions. Take a cylindrical polynomial Q(X)=Q̃(X𝜉1,...,X𝜉k) for some k ⩾1 and 𝜉1,...,𝜉k ∈ℝ. This
polynomial can be expanded in Wick products (since they span the space of all polynomials). We consier
the scalar case, the vector case just involve heavier notation. We have

Q̃(X𝜉1, . . . ,X𝜉k)=� 𝜆i1, . . . ,ir:X𝜉i1
⋅ ⋅ ⋅X𝜉ir

:

with 𝜆i1, . . . ,ir ∈ℂ. Note that if we let :X𝜉i1
⋅ ⋅ ⋅X𝜉ir:= f (X) then :X−𝜉i1

⋅ ⋅ ⋅X−𝜉ir:= f (ℝ(X)) since the covariance
is invariant under reflections. Then

𝔼[Q(X)Q(ℝ(X))]=� 𝜆i1, . . . ,ir 𝜆j1, . . . , jℓ𝔼[:X𝜉i1
⋅ ⋅ ⋅X𝜉ir

::X−𝜉j1
⋅ ⋅ ⋅X−𝜉jℓ

: ]

=� 𝜆i1, . . . ,ir 𝜆j1, . . . , jℓ �
pairings (iq, jp)

� r(𝜉iq +𝜉jp)

where we use that if r =ℓ we have

𝔼[:X𝜉i1
⋅ ⋅ ⋅X𝜉ir::X𝜉j1

⋅ ⋅ ⋅X𝜉jℓ
: ]=�

q,p
𝔼�X𝜉qX−𝜉p�𝔼�:X𝜉i1

⋅ ⋅ ⋅X𝜉q⋅ ⋅ ⋅X𝜉ir::X𝜉j1
⋅ ⋅ ⋅X−𝜉p⋅ ⋅ ⋅X𝜉jℓ

: �

and proceeding with this we obtain the equality above. We have now to show that the above expression
is positive, we know that the matrix (r(𝜉iq +𝜉jp))p,q is positive definite and so the above expression can be
written as ⟨v1,v2⟩⊕i=1

deg(Q)(ℝk)⊗ℓ where on the vector space ⊕i=1
deg(Q)(ℝk)⊗ℓ we consider the scalar products where

on ℝk we consider the product

�
i

𝛼i𝛼j̄r(𝜉i+𝜉j)

while on (ℝk)⊗ℓ we use the tesorization of this scalar product, i.e. for p1 ⊗ ⋅ ⋅ ⋅ ⊗ pℓ ∈(ℝk)⊗ℓ we let

⟨p1 ⊗ ⋅ ⋅ ⋅ ⊗ pℓ, p1⊗ ⋅ ⋅ ⋅ ⊗ pℓ⟩= �
pairings (iq, jp)

� ⟨piq, pjp⟩

and finally we identify

v1=(𝜆1, . . . ,𝜆k)⊕(𝜆1,2,𝜆1,3. . .)⊕ ⋅ ⋅ ⋅ ∈⊕i=1
deg(Q)(ℝk)⊗ℓ.

Then we deduce that ⟨v1, v1⟩⊕i=1
deg(Q)(ℝk)⊗ℓ ⩾ 0 since it is a positive definite scalar product on ⊕i=1

deg(Q)(ℝk)⊗ℓ.
We conclude that 𝔼[Q(X)Q(ℝ(X))]⩾0.

Now we approximate exp(i𝛼X𝜉j) by polynomials and then we can extend the positivity to convex linear
combinations of complex exponentials on ℝk. But these are dense in Cb

0(ℝk, ℂ) and therefore we can
extend the reflection positivity to all functions in Ccyl

0 (ℝℝ+,ℂ). □

Theorem 3. A gaussian process X satisfies conditions (1, 2, 3, 4) iff r is continuous, translation invariant
and such that eq. (1) holds. In the scalar case this holds iff r is completely monotone and bounded and
translation invariant.

Recall that complete monotonocity is exaclty the condition eq. (1) in the scalar case and this implies that
there exists a positive and bounded measure 𝜇 on ℝ+ such that

r(t)=�
0

∞
e−|t |s𝜇(ds).
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Recall that

r(t)= 1
2𝜃e−𝜃|t |

is the covariance of the Ornstein–Uhlenbeck process. So the theorem says that the reflection positive Gaus-
sian processes are positive combinations of OU processes.

For example, if 𝜇 is a sum of Dirac deltas in (𝜃k)k then one can obtain a Gaussian process with covariance
r taking the sum of independent OU processes with parameter 𝜃k.

Let us now give a look at reflection positivity for Markovian processes.

Definition 4. A process (Xt)t∈ℝ is Markovian if F ∈Ccyl
0 (M [t,+∞],ℂ) then for all 𝜉1, . . . , 𝜉k ⩽ t

𝔼[F(X)|Xt,X𝜉1, . . . ,X𝜉k]=𝔼[F(X)|Xt]

almost surely.

Definition 5. The process X is said to be symmetric with respect to time reflections if ℝ(X) has the same
law as X.

Lemma 6. If X is Markovian then F ∈Ccyl(M [t,+∞),ℂ) and G∈Ccyl(M (−∞,t],ℂ) then F(X) and G(X) are
conditionally independent given Xt.

Proof. Assuming that G(X)= G̃(X𝜉1, . . . ,X𝜉k) with 𝜉1, . . . ,𝜉k ⩽ t we have

𝔼[e i𝛼F(X)e i𝛽G(X)|Xt]=𝔼[𝔼[e i𝛼F(X)|Xt,X𝜉1, . . . ,X𝜉k]e i𝛽G(X)|Xt]

=𝔼[𝔼[e i𝛼F(X)|Xt]e i𝛽G(X)|Xt]=𝔼[e i𝛼F(X)|Xt]𝔼[e i𝛽G(X)|Xt]

so this proves conditional independence. □

Theorem 7. Let X be a Markovian process symmetric with respect to time reflections, then it is reflection
positive.

Proof. Take F ∈Ccyl(Mℝ+,ℂ) then by the above lemma

𝔼[F(X)F(ℝ(X))]=𝔼[𝔼[F(X)F(ℝ(X))|X0]]=𝔼[𝔼[F(ℝ(X))|X0]𝔼[F(X)X0]]

=𝔼[𝔼[F(ℝ(X))|X0]𝔼[F(X)X0]]

=𝔼[𝔼[F(ℝ(X))|ℝX0]𝔼[F(X)X0]]=𝔼[ |𝔼[F(X)X0]|2]⩾0,

where we used that the law is invariant under time reflection. □

The converse implication of the above lemma is also true. Note that the OU process has exactly this prop-
erty and therefore it means that the OU process is Markovian and since it is symmetric wrt. time reflections
we have another proof that that OU process is reflection positive.
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If we want to prove the other properties required for the reconstruction theorem we need that X is contin-
uous in distribution and that it is invariant (in law) under translations. These properties can be obtained
analysing the transition kernel of the Markov process.

Let us remark that Xt as an M-valued random variable has a law 𝜈=Law(Xt) which is independent of t∈ℝ.
Then we can build ℋ=L2(𝜈), with h0=1 and K(t) f ∈L2(𝜈) is given explictly by

𝔼[ f (Xt)|X0]=(K(t) f )(X0).

The proof is essentially the same we gave for the OU process. The key observation is that if F ∈Ccyl(Mℝ+;
ℂ) we have that

𝔼[(F(X)−𝔼[F(X)|X0])(F(ℝ(X))−𝔼[F(ℝ(X))|X0])]=0

by Markov property and symmetry under reflections. This allows to identify ℋ=L2(𝜈) and Q0 is given by
multiplication : Q0(a) f =a(x) f (x).

Consider a Gaussian process with r(0) = 𝕀, then X is Markovian iff r(t + s) = r(t)r(s) (as matrices) for t,
s⩾0. More generally r(t, s)= r(t,u)r(u, s) for all s⩽u⩽ t. So in particular, in the scalar case the process is
reflection positive iff it is an OU process.

To construct reflection positive processes which are Markovian but not Gaussian we can take the solution
(Xt)t of a stochastic differential equation of the form

dXt =
∇𝜌(Xt)
2𝜌(Xt)

dt +dWt,

where 𝜌 ∈ C2(ℝm, ℝ>0) and ∫𝜌(x)dx = 1. And take Law(X𝜉1, . . . , X𝜉k) to be given by the solution of the
SDE starting at X𝜉1 with law 𝜌dx. One can check that this is a consistent assignment of finite dimensional
distributions giving a continuous, stationary (i.e. invariant in law under translation), Markov process which
is moreover invariant under time reflection. Therefore it defines a reflection positive process to which the
reconstruction theorem can be applied. In the case where 𝜌 is Gaussian, then X is the OU process. However
if 𝜌 is not Gaussian this procedure gives a large class of reflection positive processes and therefore a large
class of quantum dynamics where the Hamiltonian operator H has the form

H =−Δ+V(x)

for some function V .

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The course ends here.
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