

Lecture 3 – Tue April 28th 2020 – 12:15 via Zoom – M. Gubinelli

[Strocchi, F. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians. 2 edition. New Jersey: World Scientific Publishing Company, 2008.]

C*-algebras

a,b,c, are arbitrary elements of \mathcal{A} and $\lambda,\mu\in\mathbb{C}$ with $\bar{\lambda}$ the complex conjugate of λ .

Definition 1. A (unital, always here) C^* -algebra \mathcal{A} is an associative algebra over \mathbb{C} , on top which there are a norm $\|*\|$ which makes \mathcal{A} a Banach space and such that $\|ab\| \le \|a\| \|b\|$. There is an antilinear involution $*: \mathcal{A} \to \mathcal{A}$ and such that $(a^*)^* = a$, $(ab)^* = b^*a^*$ $(\lambda a)^* = \bar{\lambda}a^*$. Moreover they satisfy the C^* -condition

$$||a^*a|| = ||a||^2$$
, $a \in \mathcal{A}$.

We call 1 the unit of \mathcal{A} . Note that

$$||a||^2 = ||a^*a|| \le ||a^*|| ||a|| \Rightarrow ||a|| \le ||a^*|| \le ||(a^*)^*|| = ||a||$$

so the involution is isometric and moreove is easy to see that $1^* = 1$ and that ||1|| = 1.

Example 2.

- The algebra of complex functions C(X) on a compact Hausdorff space X with sup norm and conjugation is a C^* -algebra.
- The algebra of all bounded operators $\mathcal{L}(\mathcal{H})$ on the Hilbert space \mathcal{H} with the operator norm and the adjoint operation is a C^* -algebra. Let's check this out: take $A \in \mathcal{L}(\mathcal{H})$, then

$$\|A^*A\| = \sup_{\|\varphi\| = \|\psi\| = 1} \langle \psi, A^*A\varphi \rangle = \sup_{\|\varphi\| = \|\psi\| = 1} \langle A\psi, A\varphi \rangle \leqslant \sup_{\|\varphi\| = \|\psi\| = 1} \|A\psi\| \|A\varphi\| \leqslant \|A\|^2$$

and on the other hand

$$\|A\|^2 = \sup_{\|\varphi\|=1} \|A\varphi\|^2 = \sup_{\|\varphi\|=1} \langle A\varphi, A\varphi \rangle = \sup_{\|\varphi\|=1} \langle \varphi, A^*A\varphi \rangle \leqslant \sup_{\|\varphi\|=\|\psi\|=1} \langle \psi, A^*A\varphi \rangle = \|A^*A\|$$

so the C^* -condition holds. Sub-*-algebras of $\mathcal{L}(\mathcal{H})$ (i.e. closed by algebraic operations, conjugations and norm convergence) are called *concrete* C^* -algebras (e.g. compact operators).

• The subalgebra $C^*(a) \subseteq \mathcal{A}$ generated by $a \in \mathcal{A}$ and the unity is a C^* -algebra with the restiction of the norm and the involutions of \mathcal{A} . The Banach algebra generated by a set of elements $a_1, ..., a_n$ is just the closure of all the polynomials in $a_1, ..., a_n$ and in their adjoints.

We call a self-adjoint iff $a = a^*$, a is normal if $aa^* = a^*a$. Any a can be decomposed into a = b + ic with b, c self-adjoint. If a is normal then $C^*(a)$ is Abelian (i.e. commutative).

Keep in mind that, for us, the observables of a physical system will be self-adjoints elements of an (abstract) C^* algebra.

Example 3. Take $L^1(\mathbb{R})$ or $L^1(\mathbb{R}_{\geq 0})$ with the convolution product and their natural norm. Then they are Banach algebras ($||ab|| \leq ||a|| ||b||$). (I think they are not C^* -algebras for the complex conjugation). For the convolution product on $L^1(\mathbb{R}_{\geq 0})$ take

$$(f * g)(t) = \int_0^t f(t - s)g(s)ds, \qquad t \geqslant 0.$$

In the following we will work with Banach algebras (denoted \mathcal{B}) and I will tell explicitly when the algebra is supposed to satisfy the C^* -condition.

The spectrum $\sigma(a) \subseteq \mathbb{C}$ of an elements of a Banach algebra $a \in \mathcal{B}$ as the set of all $\lambda \in \mathbb{C}$ for which $\lambda - a = \lambda 1_{\mathcal{B}} - a$ is not invertible in \mathcal{B} . The complement of the spectrum is called the resolvent set and $R_a(\lambda) = (\lambda - a)^{-1}$ is defined on $\sigma(a)^c$ and is called resolvent (function) for a.

Theorem 4. For any $a \in \mathcal{B}$ the spectrum $\sigma(a)$ is a non-empty compact set and the resolvent function is analytic in $\sigma(a)^c$.

Proof. For λ large we can define

$$(\lambda - a)^{-1} = \frac{1}{\lambda} (1 - a/\lambda)^{-1} = \frac{1}{\lambda} \sum_{n \ge 0} \left(\frac{a}{\lambda}\right)^n \tag{1}$$

as a convergent series in \mathcal{B} as soon as $||a|| < \lambda$. It defines an analytic function at infinity and it goes to zero as $|\lambda| \to \infty$. This tells us that $\sigma(a)$ is contained in any ball of radius > ||a||. Moreover if $\mu \notin \sigma(a)$ then $R_a(\mu) = (\mu - a)^{-1}$ exists and we can write

$$R_a(\lambda) = \sum_{n \ge 0} (-1)^n (\mu - a)^{-n-1} (\lambda - \mu)^n$$

and have this series converge in a neighb. of μ . So $\sigma(a)^c$ is open therefore $\sigma(a)$ is compact. If $\sigma(a)$ is empty then $R_a(\lambda)$ would be an analytic function on all $\mathbb C$ going to zero at infinity, which implies that $R_a(\lambda) = 0$ for all λ . $1 = (\lambda - a)R_a(\lambda) = 0$.

Proposition 5. (Spectral radius formula) For any $a \in \mathcal{B}$

$$\varrho(a) \coloneqq \sup_{\lambda \in \sigma(a)} |\lambda| = \lim_{n \to \infty} ||a^n||^{1/n} \le ||a||.$$

Moreover if \mathcal{B} is a C^* algebra and a is normal then there is equality on the r.h.s.

Remark 6. This shows that C^* are quite rigid, in the sense that the algebraic data defines the norm. The quantity $\varrho(a)$ is called the spectral radius of a.

Proof. First step is to prove that the limit $r = \lim_{n \to \infty} ||a^n||^{1/n}$ exists, then by the convergence of the resolvent series (1) one prove that $\varrho(a) = r$. For a C^* algebra we have now that if a is normal we have

$$\|a^2\|^2 \frac{}{C^*} \|a^*a^*aa\| \frac{}{}_{\text{normality}} \|aa^*a^*a\| = \|(a^*a)^*a^*a\| \frac{}{C^*} \|a^*a\|^2 \frac{}{}_{C^*} \|a\|^4.$$

So
$$||a^{2^k}|| = ||a||^{2^k}$$
 and therefore $\lim_{n\to\infty} ||a^n||^{1/n} = \lim_{n\to\infty} ||a^{2^n}||^{1/2^n} = ||a||$.

Remark 7. We will see later that $\varrho(a) = ||a||$ for any $a \in \mathcal{A}$.

Let \mathcal{B}^* be the space of continuous linear functionals $\varphi \colon \mathcal{B} \to \mathbb{C}$ on \mathcal{B} . We can consider \mathcal{B}^* as a Banach space with norm $\|\varphi\| = \sup_{\|a\|=1} |\varphi(a)|$. The weak-* topology on \mathcal{B}^* is the coarsest topology on \mathcal{B}^* which makes all the linear functionals $a \colon \varphi \in \mathcal{B}^* \mapsto \varphi(a)$ continuous for all $a \in \mathcal{B}$. By Banach-Alaoglu theorem the unit ball of \mathcal{B}^* is weakly-* compact.

A linear functional φ is multiplicative if

$$\varphi(ab) = \varphi(a)\varphi(b),$$

(also called a character). Any multiplicative functional is bounded (and therefore continuous). Indeed let $a \in \mathcal{B}$ such that $\|a\| < 1$ but $\varphi(a) = 1$. Then there always exists b = 1 + ab (think why, fixpoint). The $\varphi(b) = \varphi(1) + \varphi(a)\varphi(b)$ which implies since $\varphi(a) = 1$ that $\varphi(1) = 0$. But now $\varphi(c) = \varphi(c1) = \varphi(c)\varphi(1) = 0$. So $\varphi = 0$. Therefore we know that $\varphi(a) \le \|a\|$ and that $\|\varphi\| \le 1$ and since $\varphi(1) = 1$ we have $\varphi(1) = \|\varphi\|$.

So multiplicative functionals sits on the unit ball of \mathcal{B}^* . Let $\Sigma(\mathcal{B}) \subseteq \mathcal{B}^*$ to the space of all linear multiplicative functionals on \mathcal{B} . The set $\Sigma(\mathcal{B})$ is not a vector space.

Proposition 8. The space $\Sigma(\mathcal{B})$ is a compact Hausdorff space when endowed with the weak-* topology of \mathcal{B}^* . It is called the Gelfand spectrum of \mathcal{B} .

For any $a \in \mathcal{B}$ we can define the function $\hat{a}: \Sigma(\mathcal{B}) \to \mathbb{C}$ (called the Gelfand transform of a) by $\hat{a}(\varphi) = \varphi(a)$. Is a continuous function due to the weak-* topology.

Theorem 9. The Gelfand transform is a contractive algebra homeomorphism from \mathcal{B} to $C(\Sigma(\mathcal{B}))$. If \mathcal{B} is an Abelian C^* -algebra then the Gelfand transform is an isomorphism.