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C*-algebras

a,b,c, are arbitrary elements of /% and A, u € C with 1 the complex conjugate of 4.

Definition 1. A (unital, always here) C*-algebra A is an associative algebra over C, on top
which there are a norm ||x|| which makes # a Banach space and such that ||ab| < |all||b|. There is
an antilinear involution *: A — A and such that (a*)* =a, (ab)*=b*a* (La)* = Aa*. Moreover

they satisfy the C*-condition

la*all=lal?>, a€A.

We call 1 the unit of 4. Note that
lal® = lla*all < lla* | llal = llal < la*[ < [(a*)*] = |al

so the involution is isometric and moreove is easy to see that 1* =1 and that ||1]| = 1.

Example 2.

e The algebra of complex functions C(X) on a compact Hausdorff space X with sup norm
and conjugation is a C*-algebra.

o The algebra of all bounded operators £ (94) on the Hilbert space 3¢ with the operator
norm and the adjoint operation is a C*-algebra. Let's check this out: take A € B(96), then

IA*Al=  sup (w,A*Ap)= sup (Aw,Ap)< sup [Ayll|Ael<IAlIP
lel=llyl=1 lel=llyl=1 lel=llyl=1

and on the other hand

IAI>= sup |A@|*= sup (Ap,Ap)= sup (p,A*A@)< sup (y,A*Ap)=|A%A|
lell=1 lell=1 lell=1 lell=lyl=1

so the C*-condition holds. Sub-x*-algebras of £(94) (i.e. closed by algebraic operations,
conjugations and norm convergence) are called concrete C*-algebras (e.g. compact oper-
ators).

o The subalgebra C*(a) C A4 generated by a € A4 and the unity is a C*-algebra with the
restiction of the norm and the involutions of 4. The Banach algebra generated by a set of
elements ay,...,a, is just the closure of all the polynomials in aj,...,a, and in their adjoints.



We call a self-adjoint iff a=a”, a is normal it aa®=a"a. Any a can be decomposed into a=b+ic
with b, ¢ self-adjoint. If a is normal then C*(a) is Abelian (i.e. commutative).

Keep in mind that, for us, the observables of a physical system will be self-adjoints elements of
an (abstract) C* algebra.

Example 3. Take L'(R) or L' (R o) with the convolution product and their natural norm. Then
they are Banach algebras (|lab| < |la|l |b])). (I think they are not C*-algebras for the complex con-
jugation). For the convolution product on L' (R ) take

(Fr0) 0= [ f-s)gds, 120,

In the following we will work with Banach algebras (denoted 98) and I will tell explicitly when
the algebra is supposed to satisfy the C*-condition.

The spectrum o (a) € C of an elements of a Banach algebra a € 2 as the set of all 1 € C for which
A—a= Alg—aisnotinvertible in 98. The complement of the spectrum is called the resolvent set
and R,(1) = (1 —a)~! is defined on o (a)¢ and is called resolvent (function) for a.

Theorem 4. For any a € B the spectrum o(a) is a non-empty compact set and the resolvent
function is analytic in o (a)°.

Proof. For A large we can define

(o) =5 (-a/ D=1y (§)' ()

n=0

as a convergent series in 9 as soon as |la|| < A. It defines an analytic function at infinity and it
goes to zero as |A| — oco. This tells us that ¢ (a) is contained in any ball of radius >|la|. Moreover
if u¢o(a)then R, ()= (p —a)~! exists and we can write

R (1) = Z (—1)”(/1—a)_”_](l—,u)”

n=0

and have this series converge in a neighb. of p. So og(a)¢ is open therefore o (a) is compact. If
o (a) is empty then R,(1) would be an analytic function on all C going to zero at infinity, which
implies that R,(1) =0forall . 1=(A-a)R,(1) =0. O

Proposition 5. (Spectral radius formula) For any ae B

o(a):= sup |A|= lim [la"|'" < all.
A€o(a) n—oco

Moreover if B is a C* algebra and a is normal then there is equality on the r.h.s.

Remark 6. This shows that C* are quite rigid, in the sense that the algebraic data defines the
norm. The quantity g (a) is called the spectral radius of a.



Proof. First step is to prove that the limit r =lim, la"||}/" exists, then by the convergence of

the resolvent series (1) one prove that ¢ (a) =r. For a C* algebra we have now that if a is normal
we have

212 — - 2 4
lla” ?Ila*a*aalliIIaa*a*all=||(a*a)*a*a||—||a*all ?Ilall :

normality

k k . .
So [la* || =llal* and therefore lim, o la"|'/" = lim,- o la*'[|'/*" = |all. O

Remark 7. We will see later that ¢ (a) = ||a|| for any a € 4.

Let 3™ be the space of continuous linear functionals ¢: %8 — C on 9. We can consider B* as
a Banach space with norm |[|¢|| = supg=1l¢(a)l. The weak-* topology on 9B* is the coarsest
topology on 9 * which makes all the linear functionals a: ¢ € B* ~ ¢ (a) continuous for all a € 3.
By Banach-Alaoglu theorem the unit ball of %™ is weakly-* compact.

A linear functional ¢ is multiplicative if
p(ab) =g (a)p(b),

(also called a character). Any multiplicative functional is bounded (and therefore continuous).
Indeed let a € B such that |la|| < 1 but ¢ (a) = 1. Then there always exists b =1 + ab (think why,
fixpoint). The ¢ (b) = ¢ (1) + ¢ (a)e(b) which implies since ¢(a) =1 that ¢ (1) =0. But now
pc)=¢(cl)=p(c)p(1)=0. So ¢ =0. Therefore we know that ¢ (a) < |la| and that ||| < 1 and
since ¢ (1) =1 we have ¢(1) =|¢|.

So multiplicative functionals sits on the unit ball of %8*. Let X (%) C %™ to the space of all linear
multiplicative functionals on 98. The set X () is not a vector space.

Proposition 8. The space X (RB) is a compact Hausdor{f space when endowed with the weak-+
topology of B*. It is called the Gelfand spectrum of B.

For any a € 3B we can define the function a: X (%) — C (called the Gelfand transform of a) by
a(p) =@(a). Is a continuous function due to the weak-+ topology.

Theorem 9. The Gelfand transform is a contractive algebra homeomorphism from 3B to C(Z(B)).
If B is an Abelian C*-algebra then the Gelfand transform is an isomorphism.







