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C∗-algebras

a,b,c, are arbitrary elements of 𝒜 and 𝜆,𝜇∈ℂ with 𝜆̄ the complex conjugate of 𝜆.

Definition 1. A (unital, always here) C∗-algebra 𝒜 is an associative algebra over ℂ, on top
which there are a norm ‖∗‖ which makes 𝒜 a Banach space and such that ‖ab‖⩽‖a‖ ‖b‖. There is
an antilinear involution ∗:𝒜→𝒜 and such that (a∗)∗ =a, (ab)∗ =b∗a∗ (𝜆a)∗ =𝜆̄a∗. Moreover
they satisfy the C∗-condition

‖a∗a‖= ‖a‖2, a∈𝒜.

We call 1 the unit of 𝒜. Note that

‖a‖2 =‖a∗a‖⩽ ‖a∗‖ ‖a‖⇒‖a‖⩽‖a∗‖⩽ ‖(a∗)∗‖=‖a‖

so the involution is isometric and moreove is easy to see that 1∗ =1 and that ‖1‖=1.

Example 2.

• The algebra of complex functions C(X) on a compact Hausdorff space X with sup norm
and conjugation is a C∗-algebra.

• The algebra of all bounded operators ℒ(ℋ) on the Hilbert space ℋ with the operator
norm and the adjoint operation is a C∗-algebra. Let's check this out: take A∈ℒ(ℋ), then

‖A∗A‖= sup
‖𝜑‖=‖𝜓‖=1

⟨𝜓, A∗A𝜑⟩= sup
‖𝜑‖=‖𝜓‖=1

⟨A𝜓, A𝜑⟩⩽ sup
‖𝜑‖=‖𝜓‖=1

‖A𝜓‖‖A𝜑‖⩽‖A‖2

and on the other hand

‖A‖2= sup
‖𝜑‖=1

‖A𝜑‖2= sup
‖𝜑‖=1

⟨A𝜑, A𝜑⟩= sup
‖𝜑‖=1

⟨𝜑, A∗A𝜑⟩⩽ sup
‖𝜑‖=‖𝜓‖=1

⟨𝜓, A∗A𝜑⟩=‖A∗A‖

so the C∗-condition holds. Sub-∗-algebras of ℒ(ℋ) (i.e. closed by algebraic operations,
conjugations and norm convergence) are called concrete C∗-algebras (e.g. compact oper-
ators).

• The subalgebra C∗(a) ⊆ 𝒜 generated by a ∈ 𝒜 and the unity is a C∗-algebra with the
restiction of the norm and the involutions of 𝒜. The Banach algebra generated by a set of
elements a1,...,an is just the closure of all the polynomials in a1,...,an and in their adjoints.
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We call a self-adjoint iff a=a∗, a is normal if aa∗=a∗a. Any a can be decomposed into a=b+ ic
with b,c self-adjoint. If a is normal then C∗(a) is Abelian (i.e. commutative).

Keep in mind that, for us, the observables of a physical system will be self-adjoints elements of
an (abstract) C∗ algebra.

Example 3. Take L1(ℝ) or L1(ℝ⩾0) with the convolution product and their natural norm. Then
they are Banach algebras (‖ab‖⩽ ‖a‖ ‖b‖). (I think they are not C∗-algebras for the complex con-
jugation). For the convolution product on L1(ℝ⩾0) take

( f ∗g)(t)=�
0

t
f (t − s)g(s)ds, t ⩾0.

In the following we will work with Banach algebras (denoted ℬ) and I will tell explicitly when
the algebra is supposed to satisfy the C∗-condition.

The spectrum 𝜎(a)⊆ℂ of an elements of a Banach algebra a∈ℬ as the set of all 𝜆∈ℂ for which
𝜆−a=𝜆1ℬ−a is not invertible in ℬ. The complement of the spectrum is called the resolvent set
and Ra(𝜆)=(𝜆−a)−1 is defined on 𝜎(a)c and is called resolvent (function) for a.

Theorem 4. For any a ∈ ℬ the spectrum 𝜎(a) is a non-empty compact set and the resolvent
function is analytic in 𝜎(a)c.

Proof. For 𝜆 large we can define

(𝜆−a)−1= 1
𝜆(1−a/𝜆)−1= 1

𝜆�
n⩾0

� a
𝜆�

n
(1)

as a convergent series in ℬ as soon as ‖a‖ < 𝜆. It defines an analytic function at infinity and it
goes to zero as |𝜆|→∞. This tells us that 𝜎(a) is contained in any ball of radius >‖a‖. Moreover
if 𝜇∈𝜎(a) then Ra(𝜇)=(𝜇−a)−1 exists and we can write

Ra(𝜆)= �
n⩾0

(−1)n(𝜇−a)−n−1(𝜆−𝜇)n

and have this series converge in a neighb. of 𝜇. So 𝜎(a)c is open therefore 𝜎(a) is compact. If
𝜎(a) is empty then Ra(𝜆) would be an analytic function on all ℂ going to zero at infinity, which
implies that Ra(𝜆)=0 for all 𝜆. 1=(𝜆−a)Ra(𝜆)=0. □

Proposition 5. (Spectral radius formula) For any a∈ℬ

𝜚(a)≔ sup
𝜆∈𝜎(a)

|𝜆|= lim
n→∞

‖an‖1/n ⩽‖a‖.

Moreover if ℬ is a C∗ algebra and a is normal then there is equality on the r.h.s.

Remark 6. This shows that C∗ are quite rigid, in the sense that the algebraic data defines the
norm. The quantity 𝜚(a) is called the spectral radius of a.
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Proof. First step is to prove that the limit r = limn→∞ ‖an‖1/n exists, then by the convergence of
the resolvent series (1) one prove that 𝜚(a)= r. For a C∗ algebra we have now that if a is normal
we have

‖a2‖2 ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐
C∗

‖a∗a∗aa‖ ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐ ⇒⇐
normality

‖aa∗a∗ a‖=‖(a∗ a)∗a∗ a‖ ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐
C ∗

‖a∗ a‖2 ⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐
C∗

‖a‖4.

So �a2k�=‖a‖2k and therefore limn→∞ ‖an‖1/n =limn→∞ ‖a2n‖1/2n =‖a‖. □

Remark 7. We will see later that 𝜚(a)= ‖a‖ for any a∈𝒜.

Let ℬ∗ be the space of continuous linear functionals 𝜑: ℬ → ℂ on ℬ. We can consider ℬ∗ as
a Banach space with norm ‖𝜑‖ = sup‖a‖=1 |𝜑(a)|. The weak-∗ topology on ℬ∗ is the coarsest
topology on ℬ∗ which makes all the linear functionals a:𝜑∈ℬ∗↦𝜑(a) continuous for all a∈ℬ.
By Banach-Alaoglu theorem the unit ball of ℬ∗ is weakly-∗ compact.

A linear functional 𝜑 is multiplicative if

𝜑(ab)=𝜑(a)𝜑(b),

(also called a character). Any multiplicative functional is bounded (and therefore continuous).
Indeed let a∈ ℬ such that ‖a‖< 1 but 𝜑(a)= 1. Then there always exists b = 1 + ab (think why,
fixpoint). The 𝜑(b) = 𝜑(1) + 𝜑(a)𝜑(b) which implies since 𝜑(a) = 1 that 𝜑(1) = 0. But now
𝜑(c)=𝜑(c1)=𝜑(c)𝜑(1)= 0. So 𝜑=0. Therefore we know that 𝜑(a)⩽ ‖a‖ and that ‖𝜑‖⩽ 1 and
since 𝜑(1)=1 we have 𝜑(1)=‖𝜑‖.

So multiplicative functionals sits on the unit ball of ℬ∗. Let Σ(ℬ)⊆ℬ∗ to the space of all linear
multiplicative functionals on ℬ. The set Σ(ℬ) is not a vector space.

Proposition 8. The space Σ(ℬ) is a compact Hausdorff space when endowed with the weak-∗
topology of ℬ∗. It is called the Gelfand spectrum of ℬ.

For any a ∈ ℬ we can define the function â: Σ(ℬ) → ℂ (called the Gelfand transform of a) by
â(𝜑)=𝜑(a). Is a continuous function due to the weak-∗ topology.

Theorem 9. The Gelfand transform is a contractive algebra homeomorphism from ℬ to C(Σ(ℬ)).
If ℬ is an Abelian C∗-algebra then the Gelfand transform is an isomorphism.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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