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Francesco de Vecchi and Massimiliano Gubinelli

Lecture 5 – Tue May 5th 2020 – 14:15 via Zoom – M. Gubinelli

[Strocchi, F. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short
Course for Mathematicians. 2 edition. New Jersey: World Scientific Publishing Company, 2008.]

[P. Meier, Quantum probability for probabilists. Springer. Very nice appendix on C∗-algebra]

C∗-algebras (continued)

Positivity, state (positive linear functionals), GNS theorem, Hilbert space setting for QM. Heisen-
berg indetermination principle.

𝜎(a)={𝜆∈ℂ:(𝜆−a)is not invertible}⊆𝒜

𝜚(a)=sup{|𝜆|:𝜆∈𝜎(a)}= lim
n

‖an‖1/n.

If a is normal then

𝜚(a)= ‖a‖.

Spectral mapping principle: Let a∈𝒜. If f :ℂ→ℂ is holomorphic in the neighborhood of 𝜎(a)
then f (a) is well defined (by series expansion) and 𝜎( f (a))= f (𝜎(a)). In particular this holds for
polynomials.

Definition 1. A self-adjoint element a∈𝒜 is positive iff 𝜎(a)⊆ℝ⩾0. We write a⩾0 or a∈𝒜+.

Some properties

• Any self-adjoint positive a can be written as a=b2 where b=a1/2 (by functional calculus).

• If c2=a=b2 with s.a. b,c∈𝒜+ then b= c=a1/2. There is only one positive square root.

• One can decompose any s.a. a into the difference of two positive elements a=a+−a− (by
functional calculus).

What is the structure of 𝒜+?

• If a is self adjoint, ‖a‖ ⩽ 1 then a ⩾ 0 iff ‖1 − a‖ ⩽ 1. Observe that 𝜎(1 − a) = 1 − 𝜎(a),
𝜚(1−a)⩽1 and 𝜚(a)⩽1 therefore 𝜎(a)⊆[0, 1].

• If a⩾0 then 𝜆a⩾0 for all 𝜆⩾0 since 𝜎(𝜆a)=𝜆𝜎(a). So 𝜆𝒜+⊆𝒜+ and 𝒜+ is a cone.

• Convex combinations of positive elements are positive: a=𝜆b+(1−𝜆)c, with b,c⩾0 and
𝜆∈[0,1] then assume that ‖b‖, ‖c‖⩽1 so ‖a‖⩽𝜆‖b‖+(1−𝜆)‖c‖⩽1

‖1−a‖⩽𝜆‖1−b‖+(1−𝜆)‖1−c‖⩽𝜆+(1−𝜆)⩽1
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so a ⩾ 0. Therefore 𝒜+ is convex and by similar reasoning one can show that 𝒜+ is
closed.

Observe that if 𝒜+ =ℒ(H) then the element A∗A is positive in the operator sense ⟨x, A∗Ax⟩ ⩾0
for x∈H. From this follows also that it is positive in the sense of C∗ algebras.

For long time is was conjectured that this was true for any C∗ algebra (namely that elements of
the form a∗a are positive). But was not proven easily.

Theorem 2. For a∈𝒜 we have a∗a⩾0 (and all the positive elements have that form).

We write

a⩾b⇔a−b⩾0.

Beware of “trivial” inequalities because they could not be true in general C∗ algebras.

For example if 0⩽a⩽b then is not true in general that a2⩽b2. If you define |a|= (a∗a)1/2 then is
not true in general that |a+b| ⩽ |a| + |b|.

True inequalities:

• a⩽‖a‖ (i.e. ‖a‖1−a∈𝒜+) and a2⩽‖a‖a (by spectral considerations). f (x)=‖a‖−x⩾0 on
𝜎(a).

• a⩾0⇒c∗ac⩾0 for any c∈𝒜. (by Theorem 2)

• a⩾b⇒ f (a)⩾ f (b) when f (x)=x𝛼 for 𝛼∈(0,1] and when f (x)=(𝜆−x)−1 with 𝜆>0 and
so in general for functions of the form

f (x)=�
ℝ+

(𝜆− x)−1𝜇(d𝜆)

for any (positive) measure 𝜇 on ℝ+.

States on C∗ algebras

Definition 3. A linear functional 𝜔:𝒜→ℂ is positive if 𝜔(a)⩾0 for all a⩾0.

If 𝜔 is positive the the Cauchy–Schwarz inequality holds

|𝜔(a∗b)|⩽𝜔(a∗a)𝜔(b∗b), a,b∈𝒜.

(exercise, like the standard proof). Note that

⟨a,b⟩𝜔 =𝜔(a∗b)

is a positive-definite Hermitian form on 𝒜 (antilinear on the left and linear on the right) for any
positive linear functional.
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Proposition 4. Any bounded linear functional 𝜔:𝒜→ℂ with ‖𝜔‖=𝜔(1)=1 satisfy

𝜔(a∗)=𝜔(a).

Proof. It is enough to prove it for s.a. a. Namely that 𝜔(a)∈ℝ. You observe that

|𝜔( f (a))|⩽ ‖𝜔‖‖ f (a)‖=‖𝜔‖ sup{| f (x)|:x∈𝜎(a)}=𝜔(1)‖ f ‖C(𝜎(a))

This tells us that f ↦ ℓ( f ) = 𝜔( f (a)) is a continous linear functional on continuous functions
with the uniform norm on the compact set 𝜎(a)⊆ℂ. So ℓ( f )=∫𝜎(a) f (x)𝜇(dx) for some Randon
measure 𝜇 and any such measure has to be positive so 𝜔(a)=∫𝜎(a) x𝜇(dx)∈ℝ. □

Proposition 5. A linear functional is positive iff ‖𝜔‖=𝜔(1).

Proof. If 𝜔 is positive use that ‖a‖ − a ⩾ 0 and that ‖a‖ + a ⩾ 0 to deduce that 0 ⩽ 𝜔(‖a‖ − a) i.e.
𝜔(a)⩽‖a‖𝜔(1) and similarly 𝜔(a)⩾−‖a‖𝜔(1). Observe also that 𝜔(1)⩾0. so

|𝜔(a)|⩽ ‖a‖𝜔(1),

so that ‖𝜔‖=𝜔(1). On the other hand if 𝜔 is bounded and ‖𝜔‖=𝜔(1). I can assume that 𝜔(1)=1,
the for any a⩾0, ‖a‖⩽1 we have 𝜔(1−a)=1−𝜔(a) so

|1−𝜔(a)|= |𝜔(1−a)|⩽‖1−a‖⩽1

moreover 𝜔(a)=𝜔(a∗)=𝜔(a)∈ℝ and we conclude that 𝜔(a)∈[0,1]. □

Remark: multiplicative functionals are positive.

We in general call a state a normalized positive linear functional. Is important to observe that
there are enough states to separate the elements of 𝒜 and that an element is positive iff gives
positive value on every state.

Proposition 6. Positive linear functionals separate 𝒜 and if 𝜔(a) ⩾ 0 for all positive 𝜔 then
a∈𝒜+

Proof. (sketch) First part. Assume that 𝜔(a)=0 for any state 𝜔. We can assume a to be s.a. (by
taking real and imaginary part) then by Gelfand spectral theory we know that ‖a‖ = ‖â‖ = {𝜑(a):
𝜑 ∈ Σ(𝒜)} but then 𝜑(a) = 0 because 𝜑 is a state and therefore ‖a‖ = 0. Second part. 𝜔(a) ⩾ 0
implies that 𝜔(a)=𝜔(a∗)=𝜔(a∗) this implies that 𝜔(a−a∗)=0 by separation we have that a=a∗

and by Gelfand transform we deduce 𝜎(a)=𝜎(â)⊆ℝ+. □

Therefore the notion of positivity based on observational requirements (i.e 𝜔(a)⩾0 for any state)
coincide with the “abstract” notion of positivity given by 𝜎(a)⊆ℝ+. The interest and motivation
to set up things in a C∗ algebra comes from this nice relations between states and observables.
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The set of states 𝜔 is a convex closed subset of all the linear functinals, in particular since ‖𝜔‖=
1 then it is contained in the closed unit ball and therefore is a compact subset in the weak-*
topology. Any state can be decomposed as convex combination of pure states where a pure state
is a a state which does not allow such a decomposition.

Example: if 𝒜 =ℒ(H) then any x ∈H such that ‖x‖H =1 define a pure state 𝜔(A)= ⟨x, Ax⟩, this
kind of states are called state vectors.

Tomorrow we discuss the GNS theorem and we motivate the use of Hilbert space in the study of
QM.
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