

Lecture 5 – Tue May 5th 2020 – 14:15 via Zoom – M. Gubinelli

[Strocchi, F. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians. 2 edition. New Jersey: World Scientific Publishing Company, 2008.]

[P. Meier, Quantum probability for probabilists. Springer. Very nice appendix on C^* -algebra]

C*-algebras (continued)

Positivity, state (positive linear functionals), GNS theorem, Hilbert space setting for QM. Heisenberg indetermination principle.

$$\sigma(a) = {\lambda \in \mathbb{C} : (\lambda - a) \text{ is not invertible}} \subseteq \mathcal{A}$$

$$\varrho(a) = \sup\{|\lambda|: \lambda \in \sigma(a)\} = \lim_{n} ||a^n||^{1/n}.$$

If a is normal then

$$\varrho(a) = ||a||.$$

Spectral mapping principle: Let $a \in \mathcal{A}$. If $f: \mathbb{C} \to \mathbb{C}$ is holomorphic in the neighborhood of $\sigma(a)$ then f(a) is well defined (by series expansion) and $\sigma(f(a)) = f(\sigma(a))$. In particular this holds for polynomials.

Definition 1. A self-adjoint element $a \in \mathcal{A}$ is positive iff $\sigma(a) \subseteq \mathbb{R}_{\geq 0}$. We write $a \geq 0$ or $a \in \mathcal{A}_+$.

Some properties

- Any self-adjoint positive a can be written as $a = b^2$ where $b = a^{1/2}$ (by functional calculus).
- If $c^2 = a = b^2$ with s.a. $b, c \in \mathcal{A}_+$ then $b = c = a^{1/2}$. There is only one positive square root.
- One can decompose any s.a. a into the difference of two positive elements $a = a_+ a_-$ (by functional calculus).

What is the structure of \mathcal{A}_+ ?

- If a is self adjoint, $||a|| \le 1$ then $a \ge 0$ iff $||1 a|| \le 1$. Observe that $\sigma(1 a) = 1 \sigma(a)$, $\varrho(1 a) \le 1$ and $\varrho(a) \le 1$ therefore $\sigma(a) \subseteq [0, 1]$.
- If $a \ge 0$ then $\lambda a \ge 0$ for all $\lambda \ge 0$ since $\sigma(\lambda a) = \lambda \sigma(a)$. So $\lambda \mathcal{A}_+ \subseteq \mathcal{A}_+$ and \mathcal{A}_+ is a cone.
- Convex combinations of positive elements are positive: $a = \lambda b + (1 \lambda)c$, with $b, c \ge 0$ and $\lambda \in [0, 1]$ then assume that $||b||, ||c|| \le 1$ so $||a|| \le \lambda ||b|| + (1 \lambda)||c|| \le 1$

$$||1-a|| \le \lambda ||1-b|| + (1-\lambda)||1-c|| \le \lambda + (1-\lambda) \le 1$$

so $a \ge 0$. Therefore \mathcal{A}_+ is convex and by similar reasoning one can show that \mathcal{A}_+ is closed.

Observe that if $\mathcal{A}_+ = \mathcal{L}(H)$ then the element A^*A is positive in the operator sense $\langle x, A^*Ax \rangle \ge 0$ for $x \in H$. From this follows also that it is positive in the sense of C^* algebras.

For long time is was conjectured that this was true for any C^* algebra (namely that elements of the form a^*a are positive). But was not proven easily.

Theorem 2. For $a \in \mathcal{A}$ we have $a^*a \ge 0$ (and all the positive elements have that form).

We write

$$a \geqslant b \Leftrightarrow a - b \geqslant 0$$
.

Beware of "trivial" inequalities because they could not be true in general C^* algebras.

For example if $0 \le a \le b$ then is not true in general that $a^2 \le b^2$. If you define $|a| = (a^*a)^{1/2}$ then is not true in general that $|a+b| \le |a| + |b|$.

True inequalities:

- $a \le ||a||$ (i.e. $||a||1 a \in \mathcal{A}_+$) and $a^2 \le ||a||a$ (by spectral considerations). $f(x) = ||a|| x \ge 0$ on $\sigma(a)$.
- $a \ge 0 \Rightarrow c^*ac \ge 0$ for any $c \in \mathcal{A}$. (by Theorem 2)
- $a \ge b \Rightarrow f(a) \ge f(b)$ when $f(x) = x^{\alpha}$ for $\alpha \in (0,1]$ and when $f(x) = (\lambda x)^{-1}$ with $\lambda > 0$ and so in general for functions of the form

$$f(x) = \int_{\mathbb{R}_+} (\lambda - x)^{-1} \mu(\mathrm{d}\lambda)$$

for any (positive) measure μ on \mathbb{R}_+ .

States on C^* algebras

Definition 3. A linear functional $\omega: \mathcal{A} \to \mathbb{C}$ is positive if $\omega(a) \ge 0$ for all $a \ge 0$.

If ω is positive the Cauchy–Schwarz inequality holds

$$|\omega(a^*b)| \le \omega(a^*a)\omega(b^*b), \quad a,b \in \mathcal{A}.$$

(exercise, like the standard proof). Note that

$$\langle a,b\rangle_{\omega} = \omega(a^*b)$$

is a positive-definite Hermitian form on \mathcal{A} (antilinear on the left and linear on the right) for any positive linear functional.

Proposition 4. Any bounded linear functional $\omega: \mathcal{A} \to \mathbb{C}$ with $\|\omega\| = \omega(1) = 1$ satisfy

$$\omega(a^*) = \overline{\omega(a)}$$
.

Proof. It is enough to prove it for s.a. a. Namely that $\omega(a) \in \mathbb{R}$. You observe that

$$|\omega(f(a))| \le ||\omega|| ||f(a)|| = ||\omega|| \sup \{|f(x)| : x \in \sigma(a)\} = \omega(1) ||f||_{C(\sigma(a))}$$

This tells us that $f \mapsto \ell(f) = \omega(f(a))$ is a continous linear functional on continuous functions with the uniform norm on the compact set $\sigma(a) \subseteq \mathbb{C}$. So $\ell(f) = \int_{\sigma(a)} f(x) \mu(dx)$ for some Randon measure μ and any such measure has to be positive so $\omega(a) = \int_{\sigma(a)} x \mu(dx) \in \mathbb{R}$.

Proposition 5. A linear functional is positive iff $\|\omega\| = \omega(1)$.

Proof. If ω is positive use that $||a|| - a \ge 0$ and that $||a|| + a \ge 0$ to deduce that $0 \le \omega(||a|| - a)$ i.e. $\omega(a) \le ||a||\omega(1)$ and similarly $\omega(a) \ge -||a||\omega(1)$. Observe also that $\omega(1) \ge 0$. so

$$|\omega(a)| \leq ||a|| \omega(1)$$
,

so that $\|\omega\| = \omega(1)$. On the other hand if ω is bounded and $\|\omega\| = \omega(1)$. I can assume that $\omega(1) = 1$, the for any $a \ge 0$, $\|a\| \le 1$ we have $\omega(1-a) = 1 - \omega(a)$ so

$$|1 - \omega(a)| = |\omega(1 - a)| \le ||1 - a|| \le 1$$

moreover $\overline{\omega(a)} = \omega(a^*) = \omega(a) \in \mathbb{R}$ and we conclude that $\omega(a) \in [0, 1]$.

Remark: multiplicative functionals are positive.

We in general call a state a normalized positive linear functional. Is important to observe that there are enough states to separate the elements of \mathcal{A} and that an element is positive iff gives positive value on every state.

Proposition 6. Positive linear functionals separate \mathcal{A} and if $\omega(a) \ge 0$ for all positive ω then $a \in \mathcal{A}_+$

Proof. (sketch) First part. Assume that $\omega(a) = 0$ for any state ω . We can assume a to be s.a. (by taking real and imaginary part) then by Gelfand spectral theory we know that $||a|| = ||\hat{a}|| = \{\varphi(a): \varphi \in \Sigma(\mathcal{A})\}$ but then $\varphi(a) = 0$ because φ is a state and therefore ||a|| = 0. Second part. $\omega(a) \ge 0$ implies that $\omega(a) = \overline{\omega(a^*)} = \omega(a^*)$ this implies that $\omega(a - a^*) = 0$ by separation we have that $a = a^*$ and by Gelfand transform we deduce $\sigma(a) = \sigma(\hat{a}) \subseteq \mathbb{R}_+$.

Therefore the notion of positivity based on observational requirements (i.e $\omega(a) \ge 0$ for any state) coincide with the "abstract" notion of positivity given by $\sigma(a) \subseteq \mathbb{R}_+$. The interest and motivation to set up things in a C^* algebra comes from this nice relations between states and observables.

The set of states ω is a convex closed subset of all the linear functinals, in particular since $\|\omega\| = 1$ then it is contained in the closed unit ball and therefore is a compact subset in the weak-* topology. Any state can be decomposed as convex combination of pure states where a pure state is a a state which does not allow such a decomposition.

Example: if $\mathcal{A} = \mathcal{L}(H)$ then any $x \in H$ such that $||x||_H = 1$ define a pure state $\omega(A) = \langle x, Ax \rangle$, this kind of states are called state vectors.

Tomorrow we discuss the GNS theorem and we motivate the use of Hilbert space in the study of QM.