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[P. Meier, Quantum probability for probabilists. Springer. Very nice appendix on C*-algebra]
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C*-algebras (continued)
Positivity, state (positive linear functionals), GNS theorem, Hilbert space setting for QM. Heisen-
berg indetermination principle.
o(a) ={1 €C: (1 —-a)is not invertible} C A
e(a)=sup{|A]: L € o (a)} =lim|a"|"/".
n
If a is normal then
o(a)=|al.

Spectral mapping principle: Let ae A. If f: C - C is holomorphic in the neighborhood of o (a)
then f(a) is well defined (by series expansion) and o (f(a)) =f (o (a)). In particular this holds for
polynomials.

Definition 1. A self-adjoint element a € A is positive iff o(a) C Rso. We write a20 orae ..

Some properties
« Any self-adjoint positive a can be written as a = b where b =a'/? (by functional calculus).
o Ifc’=a=b%withs.a. b,ce A, then b=c=a'/?. There is only one positive square root.

e One can decompose any s.a. a into the difference of two positive elements a=a, —a_ (by
functional calculus).

What is the structure of A4 ,?

o If a is self adjoint, [la|| <1 then a >0 iff |1 —a| < 1. Observe that 6(1 —a) =1-o0/(a),
o(1-a)<1 and g(a) <1 therefore o (a) C[0,1].

o Ifa>0then Aa>0forall A >0since o(Aa)=A1c(a). So AA,.C A, and A, is a cone.

¢ Convex combinations of positive elements are positive: a= Ab+ (1-1)c, with b,c >0 and
4 €[0,1] then assume that ||b[], lc <1 so [lal| < A1b]| + (1 - 2)llc <1

M-al< A1 =bl+ (-1 -cl<A+(1-2)<1



so a 2 0. Therefore /4, is convex and by similar reasoning one can show that 4. is
closed.

Observe that if A, = %£(H) then the element A*A is positive in the operator sense (x, A*Ax) 20
for x € H. From this follows also that it is positive in the sense of C* algebras.

For long time is was conjectured that this was true for any C* algebra (namely that elements of
the form a*a are positive). But was not proven easily.

Theorem 2. For a€ A we have a*a 20 (and all the positive elements have that form).

We write
azbea-b=0.

Beware of “trivial” inequalities because they could not be true in general C* algebras.
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For example if 0 <a <b then is not true in general that a’<b2 If you define |a| = (a*a) "/~ then is

not true in general that |a + b| < |a| + |b].

True inequalities:

e a<x|al (.. la|]l-a€ A4,) and a’*<alla (by spectral considerations). f(x)=|a-x>0 on
o(a).

e az0=c*ac>0 for any c € 4. (by Theorem 2)

e azb= f(a)>=f(b) when f(x)=xfor a € (0,1] and when f(x) = (1=x)""with 1 >0 and
so in general for functions of the form

fw={ -n"u@)

for any (positive) measure yu on R .

States on C* algebras
Definition 3. A linear functional w: /4 — C is positive if w(a) >0 for all a>0.

If w is positive the the Cauchy—Schwarz inequality holds
lw(a*b)| < w(a*a)w(b™D), a,be A.
(exercise, like the standard proof). Note that
(a,b), = w(a*b)

is a positive-definite Hermitian form on .4 (antilinear on the left and linear on the right) for any
positive linear functional.



Proposition 4. Any bounded linear functional w: A — C with || = w (1) =1 satisfy

Proof. It is enough to prove it for s.a. a. Namely that w(a) € R. You observe that

lw(f(a)I<wlllf (@)= lwlsup{lfx)|:x€o(a)}=wl)flca)

This tells us that f - €(f) = w(f(a)) is a continous linear functional on continuous functions
with the uniform norm on the compact set o (a) CC. So €(f) = fg(a)f(x),u(dx) for some Randon
measure p and any such measure has to be positive so w(a) = fa @ xu(dx) e R. O

Proposition 5. A linear functional is positive iff || =w(1).

Proof. If w is positive use that ||| —a >0 and that ||a| + a > 0 to deduce that 0 < w (]lall—a) i.e.
w(a) <|lalw (1) and similarly w(a) >—|allw(1). Observe also that w (1) >0. so

lw(a)<lall w (1),

so that [|w||= w(1). On the other hand if w is bounded and ||w| = w(1). I can assume that w (1) =1,
the for any a >0, |la| <1 we have w(1-a)=1-w(a) so

I-w(@|=lo(l-a)<|l-al<1

moreover w(a) =w(a*) = w(a) € R and we conclude that w(a) €[0,1]. O

Remark: multiplicative functionals are positive.

We in general call a state a normalized positive linear functional. Is important to observe that
there are enough states to separate the elements of 4 and that an element is positive iff gives
positive value on every state.

Proposition 6. Positive linear functionals separate A and if w(a) 20 for all positive w then
ac A,

Proof. (sketch) First part. Assume that w(a) =0 for any state w. We can assume a to be s.a. (by
taking real and imaginary part) then by Gelfand spectral theory we know that |a| = |dl = {¢(a):
@ € X(A4))} but then ¢ (a) =0 because ¢ is a state and therefore |al|=0. Second part. w(a)=0

implies that w (a) = w (a*) = w(a®) this implies that w (a—a*) =0 by separation we have that a=a*
and by Gelfand transform we deduce o (a) =0 (a) CR,. O

Therefore the notion of positivity based on observational requirements (i.e @ (a) >0 for any state)
coincide with the “abstract” notion of positivity given by ¢ (a) CR,. The interest and motivation
to set up things in a C* algebra comes from this nice relations between states and observables.



The set of states w is a convex closed subset of all the linear functinals, in particular since ||w]| =
1 then it is contained in the closed unit ball and therefore is a compact subset in the weak-*
topology. Any state can be decomposed as convex combination of pure states where a pure state
is a a state which does not allow such a decomposition.

Example: if A =% (H) then any x € H such that ||x|z =1 define a pure state w(A) = (x, Ax), this
kind of states are called state vectors.

Tomorrow we discuss the GNS theorem and we motivate the use of Hilbert space in the study of

QM.






