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[Strocchi, F. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short
Course for Mathematicians. 2 edition. New Jersey: World Scientific Publishing Company, 2008.]

[P. Meyer, Quantum probability for probabilists. Springer. Very nice appendix on C∗-algebra]

C∗-algebras – GNS Theorem, representations (continued)

Indeed is clear that if you have two representations 𝜑,𝜓 acting on two Hilbert spaces H1,H2 you
can alway form another representation 𝜑⊗𝜓 acting on the tensor product Hilbert space H1 ⊗H2
(revise the definition) as

(𝜑⊗𝜓)(a)(v⊗w)=𝜑(a)v⊗𝜓(a)w v∈H1,w∈H2.

Definition 1. A representation 𝜑 is irreducible if the only invariant subspaces for the action of
the family of operators 𝜑(𝒜)={𝜑(a):a∈𝒜}⊆ℒ(H) are {0},H.

For any family ℬ⊆ℒ(H) we denote by ℬ′ the commutant of ℬ, that is the set

ℬ′={C ∈ℒ(H): [C,B]=0,∀B∈ℬ},

where [C,B]=CB−BC. Note that ℬ⊆ℬ′′ and that ℬ′⊇ℂ={𝜆1:𝜆∈ℂ}.

Lemma 2. The representation 𝜑 is irreducible iff 𝜑(𝒜)′=ℂ={𝜆1:𝜆∈ℂ}.

Proof. If 𝜑 is reducible then let P the orthogonal projection on a non-trivial invariant subspace.
Let v∈PH then we have 𝜑(a)v∈PH and 𝜑(a)Pv=𝜑(a)v=P𝜑(a)v. If v∈PH then v∈QH with
Q=1−P and then for any w

⟨w,𝜑(a)Qv⟩= ⟨𝜑(a)∗w,Qv⟩= ⟨𝜑(a)∗(P+Q)w,Qv⟩

=⟨P𝜑(a∗)w,Qv⟩+⟨𝜑(a)∗Qw,Qv⟩=⟨Qw,𝜑(a)v⟩= ⟨w,Q𝜑(a)v⟩

so [𝜑(a),Q]= 0. Then is clear that P ∈𝜑(𝒜)′. Reciprocally if H ∈ 𝜑(𝒜)′ is a nontrivial self-
adjoint element of ℒ(H), by spectral calculus we can produce a projection P∈𝜑(𝒜)′ by setting
P=𝜒(H) with 𝜒:ℝ→ℝ some characteristic function of a subset of ℝ, then P2=P so P is indeed
a projection and the associated subspace is invariant under 𝜑(𝒜) since P commute with any
𝜑(a). □

Remark 3. Remember that a representation 𝜑 is cyclic if there exists a vector v ∈ H such that
{𝜑(a)v: a ∈ 𝒜} is dense in H. Note that any irreducible representation is cyclic for any vector.
However not all the cyclic representations are irreducible (see below).
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Recall that the set of all states 𝒮 (positive normalized linear functionals on 𝒜) is a convex set,
closed for the weak-∗ topology. A pure state is (by definition) an extremal point in this convex
set, i.e. cannot be written as linear combination of other states. By Krein–Milman theorem the set
of all states is the closure (in the weak-∗ topology) of the convex combitations of pure states.

Proposition 4. The GNS representation (H𝜔,𝜑𝜔,Ω𝜔) for a state 𝜔 is irreducible iff the state 𝜔
is pure.

Proof. Let's assume that 𝜑𝜔 is reducible, that is there exists a non-trivial orthogonal projection P
in 𝜑𝜔(𝒜)′, then observe that, with Ω𝜔 ∈H𝜔 the vacuum vector for 𝜑𝜔 and with Q=1−P

𝜔(a)= ⟨Ω𝜔,𝜑𝜔(a)Ω𝜔⟩H𝜔 =⟨PΩ𝜔,𝜑𝜔(a)PΩ𝜔⟩H𝜔 +⟨QΩ𝜔,𝜑𝜔(a)QΩ𝜔⟩H𝜔,

where the cross terms disappear since P commutes with 𝜑𝜔(a). Observe that

𝜆=⟨PΩ𝜔,PΩ𝜔⟩H𝜔 ∈(0,1)

indeed if for example 𝜆 = 0 we would have PΩ𝜔 = 0 but then P𝜑𝜔(a)Ω𝜔 = 0 and by ciclicity of
Ω𝜔 and continuity of P we would deduce that Pw=0 for any w∈H𝜔 which is ruled out by non-
triviality of P. Similarly 𝜆=1 is also ruled out by an analogous argument. Now let

𝜔1(a)≔ ⟨PΩ𝜔,𝜑𝜔(a)PΩ𝜔⟩H𝜔

⟨PΩ𝜔,PΩ𝜔⟩H𝜔
, 𝜔2(a)≔ ⟨QΩ𝜔,𝜑𝜔(a)QΩ𝜔⟩H𝜔

⟨QΩ𝜔,QΩ𝜔⟩H𝜔
,

and observe that 𝜔1,𝜔2 are states on 𝒜 and that 𝜔=𝜆𝜔1+(1−𝜆)𝜔2. If 𝜔1=𝜔2 then 𝜔=𝜔1=𝜔2
and this cannot happen since then

⟨Ω𝜔,𝜑𝜔(a)Ω𝜔⟩H𝜔 = ⟨PΩ𝜔,𝜑𝜔(a)Ω𝜔⟩H𝜔

⟨PΩ𝜔,PΩ𝜔⟩H𝜔
, a∈𝒜

but then 𝜑𝜔(a)Ω𝜔 approximate any vector 𝜓∈QH𝜔 but then this implies

⟨Ω𝜔,𝜓⟩H𝜔 = ⟨PΩ𝜔,𝜓⟩H𝜔

⟨PΩ𝜔,PΩ𝜔⟩H𝜔
=0,

which in turn implies that QΩ𝜔 = 0 but this is a contradiction with ⟨PΩ𝜔, PΩ𝜔⟩H𝜔 < 1. This
implies that the state is not extremal, i.e. no pure.

Let's prove the converse, assume that the state 𝜔 is not pure, i.e. there exists 𝜆∈(0,1) and states
𝜔1 ≠𝜔2 such that 𝜔=𝜆𝜔1 +(1−𝜆)𝜔2. This implies that 𝜔1 is dominated by 𝜔 in the sense that
if a⩾0 we have

𝜔(a)=𝜆𝜔1(a)+(1−𝜆)𝜔2(a)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
⩾0

⩾𝜆𝜔1(a).

So the Hermitian form B(a,b)↦𝜔1(a∗b) on 𝒜 satisfies (B(a,b)=𝜔1(a∗b)=𝜔1(b∗a)=B(b,a))

B(a,a)⩽ 1
𝜆𝜔(a∗a)= 1

𝜆⟨a,a⟩H𝜔.
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In particular B(a,b) is well defined on 𝒜\𝒩𝜔 with 𝒩𝜔 ={a∈𝒜:⟨a,a⟩H𝜔 =0} as a consequence
it defines a bounded self-adjoint operator X:H𝜔 →H𝜔 such that

B(a,b)= ⟨a,Xb⟩H𝜔, a,b∈𝒜.

(exercise) Now observe that B(a,cb)=𝜔1(a∗cb)=𝜔1((c∗a)∗ b)=B(c∗a,b), as a consequence

⟨a,X𝜑𝜔(c)b⟩H𝜔 =B(a,cb)=B(c∗a,b)= ⟨𝜑𝜔(c∗)a,Xb⟩H𝜔 =⟨a,𝜑𝜔(c)Xb⟩H𝜔, a,b∈𝒜

from which we conclude that X𝜑𝜔(c)=𝜑𝜔(c)X using the density of 𝒜 in H𝜔. This holds for any
c∈𝒜 therefore we conclude that X ∈𝜑(𝒜)′. Now X is a non-trivial self-adjoint operator so the
representation is not irreducible. □

A pure state represent a situation which cannot be reduced to “simpler ones”. If a state is not pure
then one can imagine that is obtained probabilistically by sampling one among is pure compo-
nents with certain probabilities.

Example 𝜔=𝜆𝜔1+(1−𝜆)𝜔2 represents the situation where with probability 𝜆1 the system is in
the state 𝜔1 and with probability 1−𝜆 it is in the state 𝜔2.

Corollary 5. If 𝒜 is Abelian the a state is pure iff it is multiplicative.

Proof. Let 𝜔 be a pure state, then the representation 𝜑𝜔 is irreducible but it is also Abelian
𝜑𝜔(𝒜)⊆𝜑(𝒜)′=ℂ, so it is a one-dimensional representation and H𝜔 =ℂ is also a one-dimen-
sional Hilbert space. Therefore

𝜔(ab)=⟨Ω𝜔,𝜑𝜔(a)𝜑𝜔(b)Ω𝜔⟩H𝜔 =⟨Ω𝜔,𝜑𝜔(a)Ω𝜔⟩H𝜔⟨Ω𝜔,𝜑𝜔(b)Ω𝜔⟩H𝜔 =𝜔(a)𝜔(b)

so 𝜔 is multiplicative. On the hand if 𝜔 is multiplicative the 𝜔(a∗b) = 𝜔(a∗)𝜔(b) = 𝜔(a)𝜔(b)
so 𝜑𝜔(a) = 𝜔(a) is the GNS representation resulting from it and is one dimensional, therefore
irreducible. □

So in the commutative case, the pure state are the elements of the Gelfand spectrum Σ(𝒜) and
any element of 𝒜 can be seen as a continuous complext function on Σ(𝒜). A pure state is just
evaluation in a point for these functions 𝜔( f )= f (𝜔), i.e. a Dirac measure and a impure state is
the limit of convex combintations of such “delta measures”. So in particular any state 𝜔 can be
written as an average

𝜔( f )=�
𝜎(𝒜)

f̂ (𝜌)𝜇(d𝜌)

for some measure 𝜇∈Π(Σ(𝒜)).

So the commutative situation corresponds to standard probability theory and measuraments are
“incertain” just because we do not know the pure state that represent the system but maybe only
a probability distribution over them.

Note that on pure states 𝜔 we have Δ𝜔( f )=𝜔( f 2)−𝜔( f )2=0. So they represent the more precise
determination of the state of a system. This of course if the algebra is Abelian.

3



------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

4



5


