

Lecture 7 – Tue May 11th 2020 – 14:15 via Zoom – M. Gubinelli

[Strocchi, F. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians. 2 edition. New Jersey: World Scientific Publishing Company, 2008.]

[P. Meyer, Quantum probability for probabilists. Springer. Very nice appendix on C^* -algebra]

C^* -algebras – GNS Theorem, representations (continued)

Indeed is clear that if you have two representations φ, ψ acting on two Hilbert spaces H_1, H_2 you can alway form another representation $\varphi \otimes \psi$ acting on the tensor product Hilbert space $H_1 \otimes H_2$ (revise the definition) as

$$(\varphi \otimes \psi)(a)(v \otimes w) = \varphi(a)v \otimes \psi(a)w \qquad v \in H_1, w \in H_2.$$

Definition 1. A representation φ is irreducible if the only invariant subspaces for the action of the family of operators $\varphi(\mathcal{A}) = \{\varphi(a) : a \in \mathcal{A}\} \subseteq \mathcal{L}(H)$ are $\{0\}, H$.

For any family $\mathcal{B} \subseteq \mathcal{L}(H)$ we denote by \mathcal{B}' the commutant of \mathcal{B} , that is the set

$$\mathcal{B}' = \{ C \in \mathcal{L}(H) : [C, B] = 0, \forall B \in \mathcal{B} \},$$

where [C, B] = CB - BC. Note that $\mathcal{B} \subseteq \mathcal{B}''$ and that $\mathcal{B}' \supseteq \mathbb{C} = \{\lambda \mathbb{1} : \lambda \in \mathbb{C}\}.$

Lemma 2. The representation φ is irreducible iff $\varphi(\mathcal{A})' = \mathbb{C} = \{\lambda \mathbb{1} : \lambda \in \mathbb{C}\}.$

Proof. If φ is reducible then let P the orthogonal projection on a non-trivial invariant subspace. Let $v \in PH$ then we have $\varphi(a)v \in PH$ and $\varphi(a)Pv = \varphi(a)v = P\varphi(a)v$. If $v \notin PH$ then $v \in QH$ with Q = 1 - P and then for any w

$$\langle w, \varphi(a)Qv \rangle = \langle \varphi(a)^*w, Qv \rangle = \langle \varphi(a)^*(P+Q)w, Qv \rangle$$

$$= \langle P\varphi(a^*) w, Qv \rangle + \langle \varphi(a)^*Qw, Qv \rangle = \langle Qw, \varphi(a)v \rangle = \langle w, Q\varphi(a)v \rangle$$

so $[\varphi(a),Q]=0$. Then is clear that $P \in \varphi(\mathcal{A})'$. Reciprocally if $H \in \varphi(\mathcal{A})'$ is a nontrivial self-adjoint element of $\mathcal{L}(H)$, by spectral calculus we can produce a projection $P \in \varphi(\mathcal{A})'$ by setting $P = \chi(H)$ with $\chi: \mathbb{R} \to \mathbb{R}$ some characteristic function of a subset of \mathbb{R} , then $P^2 = P$ so P is indeed a projection and the associated subspace is invariant under $\varphi(\mathcal{A})$ since P commute with any $\varphi(a)$.

Remark 3. Remember that a representation φ is cyclic if there exists a vector $v \in H$ such that $\{\varphi(a)v: a \in \mathcal{A}\}$ is dense in H. Note that any irreducible representation is cyclic for any vector. However not all the cyclic representations are irreducible (see below).

Recall that the set of all states \mathcal{S} (positive normalized linear functionals on \mathcal{A}) is a convex set, closed for the weak-* topology. A *pure state* is (by definition) an extremal point in this convex set, i.e. cannot be written as linear combination of other states. By Krein–Milman theorem the set of all states is the closure (in the weak-* topology) of the convex combitations of pure states.

Proposition 4. The GNS representation $(H_{\omega}, \varphi_{\omega}, \Omega_{\omega})$ for a state ω is irreducible iff the state ω is pure.

Proof. Let's assume that φ_{ω} is reducible, that is there exists a non-trivial orthogonal projection P in $\varphi_{\omega}(\mathcal{A})'$, then observe that, with $\Omega_{\omega} \in H_{\omega}$ the vacuum vector for φ_{ω} and with Q = 1 - P

$$\omega(a) = \langle \Omega_{\omega}, \varphi_{\omega}(a) \Omega_{\omega} \rangle_{H_{\omega}} = \langle P\Omega_{\omega}, \varphi_{\omega}(a) P\Omega_{\omega} \rangle_{H_{\omega}} + \langle Q\Omega_{\omega}, \varphi_{\omega}(a) Q\Omega_{\omega} \rangle_{H_{\omega}},$$

where the cross terms disappear since P commutes with $\varphi_{\omega}(a)$. Observe that

$$\lambda = \langle P\Omega_{\omega}, P\Omega_{\omega} \rangle_{H_{\omega}} \in (0, 1)$$

indeed if for example $\lambda = 0$ we would have $P\Omega_{\omega} = 0$ but then $P\varphi_{\omega}(a)\Omega_{\omega} = 0$ and by ciclicity of Ω_{ω} and continuity of P we would deduce that Pw = 0 for any $w \in H_{\omega}$ which is ruled out by nontriviality of P. Similarly $\lambda = 1$ is also ruled out by an analogous argument. Now let

$$\omega_1(a)\coloneqq\frac{\langle P\Omega_\omega,\varphi_\omega(a)P\Omega_\omega\rangle_{H_\omega}}{\langle P\Omega_\omega,P\Omega_\omega\rangle_{H_\omega}},\qquad \omega_2(a)\coloneqq\frac{\langle Q\Omega_\omega,\varphi_\omega(a)Q\Omega_\omega\rangle_{H_\omega}}{\langle Q\Omega_\omega,Q\Omega_\omega\rangle_{H_\omega}},$$

and observe that ω_1, ω_2 are states on \mathcal{A} and that $\omega = \lambda \omega_1 + (1 - \lambda)\omega_2$. If $\omega_1 = \omega_2$ then $\omega = \omega_1 = \omega_2$ and this cannot happen since then

$$\langle \Omega_{\omega}, \varphi_{\omega}(a) \Omega_{\omega} \rangle_{H_{\omega}} = \frac{\langle P\Omega_{\omega}, \varphi_{\omega}(a) \Omega_{\omega} \rangle_{H_{\omega}}}{\langle P\Omega_{\omega}, P\Omega_{\omega} \rangle_{H_{\omega}}}, \qquad a \in \mathcal{A}$$

but then $\varphi_{\omega}(a)\Omega_{\omega}$ approximate any vector $\psi \in QH_{\omega}$ but then this implies

$$\langle \Omega_{\omega}, \psi \rangle_{H_{\omega}} = \frac{\langle P\Omega_{\omega}, \psi \rangle_{H_{\omega}}}{\langle P\Omega_{\omega}, P\Omega_{\omega} \rangle_{H_{\omega}}} = 0,$$

which in turn implies that $Q\Omega_{\omega} = 0$ but this is a contradiction with $\langle P\Omega_{\omega}, P\Omega_{\omega} \rangle_{H_{\omega}} < 1$. This implies that the state is not extremal, i.e. no pure.

Let's prove the converse, assume that the state ω is not pure, i.e. there exists $\lambda \in (0,1)$ and states $\omega_1 \neq \omega_2$ such that $\omega = \lambda \omega_1 + (1 - \lambda)\omega_2$. This implies that ω_1 is dominated by ω in the sense that if $a \geqslant 0$ we have

$$\omega(a) = \lambda \, \omega_1(a) + \underbrace{(1-\lambda) \, \omega_2(a)}_{\geq 0} \geq \lambda \, \omega_1(a).$$

So the Hermitian form $B(a,b) \mapsto \omega_1(a^*b)$ on \mathcal{A} satisfies $(\overline{B(a,b)} = \overline{\omega_1(a^*b)} = \omega_1(b^*a) = B(b,a))$

$$B(a,a) \leq \frac{1}{\lambda} \omega(a^*a) = \frac{1}{\lambda} \langle a, a \rangle_{H_{\omega}}.$$

In particular B(a,b) is well defined on $\mathcal{A} \setminus \mathcal{N}_{\omega}$ with $\mathcal{N}_{\omega} = \{a \in \mathcal{A} : \langle a,a \rangle_{H_{\omega}} = 0\}$ as a consequence it defines a bounded self-adjoint operator $X: H_{\omega} \to H_{\omega}$ such that

$$B(a,b) = \langle a, Xb \rangle_{H_{\omega}}, \quad a,b \in \mathcal{A}.$$

(exercise) Now observe that $B(a,cb) = \omega_1(a^*cb) = \omega_1((c^*a)^*b) = B(c^*a,b)$, as a consequence

$$\langle a, X \varphi_{\omega}(c) b \rangle_{H_{\omega}} = B(a, cb) = B(c^*a, b) = \langle \varphi_{\omega}(c^*)a, Xb \rangle_{H_{\omega}} = \langle a, \varphi_{\omega}(c)Xb \rangle_{H_{\omega}}, \qquad a, b \in \mathcal{A}$$

from which we conclude that $X\varphi_{\omega}(c) = \varphi_{\omega}(c)X$ using the density of \mathscr{A} in H_{ω} . This holds for any $c \in \mathscr{A}$ therefore we conclude that $X \in \varphi(\mathscr{A})'$. Now X is a non-trivial self-adjoint operator so the representation is not irreducible.

A pure state represent a situation which cannot be reduced to "simpler ones". If a state is not pure then one can imagine that is obtained probabilistically by sampling one among is pure components with certain probabilities.

Example $\omega = \lambda \omega_1 + (1 - \lambda)\omega_2$ represents the situation where with probability λ_1 the system is in the state ω_1 and with probability $1 - \lambda$ it is in the state ω_2 .

Corollary 5. If \mathcal{A} is Abelian the a state is pure iff it is multiplicative.

Proof. Let ω be a pure state, then the representation φ_{ω} is irreducible but it is also Abelian $\varphi_{\omega}(\mathcal{A}) \subseteq \varphi(\mathcal{A})' = \mathbb{C}$, so it is a one-dimensional representation and $H_{\omega} = \mathbb{C}$ is also a one-dimensional Hilbert space. Therefore

$$\omega(ab) = \langle \Omega_{\omega}, \varphi_{\omega}(a) \varphi_{\omega}(b) \Omega_{\omega} \rangle_{H_{\omega}} = \langle \Omega_{\omega}, \varphi_{\omega}(a) \Omega_{\omega} \rangle_{H_{\omega}} \langle \Omega_{\omega}, \varphi_{\omega}(b) \Omega_{\omega} \rangle_{H_{\omega}} = \omega(a) \omega(b)$$

so ω is multiplicative. On the hand if ω is multiplicative the $\omega(a^*b) = \omega(a^*)\omega(b) = \overline{\omega(a)}\omega(b)$ so $\varphi_{\omega}(a) = \omega(a)$ is the GNS representation resulting from it and is one dimensional, therefore irreducible.

So in the commutative case, the pure state are the elements of the Gelfand spectrum $\Sigma(\mathcal{A})$ and any element of \mathcal{A} can be seen as a continuous complext function on $\Sigma(\mathcal{A})$. A pure state is just evaluation in a point for these functions $\omega(f) = f(\omega)$, i.e. a Dirac measure and a impure state is the limit of convex combinations of such "delta measures". So in particular any state ω can be written as an *average*

$$\omega(f) = \int_{\sigma(\mathcal{A})} \hat{f}(\rho) \, \mu(\mathrm{d}\rho)$$

for some measure $\mu \in \Pi(\Sigma(\mathcal{A}))$.

So the commutative situation corresponds to standard probability theory and measuraments are "incertain" just because we do not know the pure state that represent the system but maybe only a probability distribution over them.

Note that on pure states ω we have $\Delta_{\omega}(f) = \omega(f^2) - \omega(f)^2 = 0$. So they represent the more precise determination of the state of a system. This of course if the algebra is Abelian.