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Francesco de Vecchi and Massimiliano Gubinelli

Lecture 8 – Wed May 12th 2020 – 8:15 via Zoom – M. Gubinelli

Last lecture: pure states, irreducible representations, mixed states, probabilistic interpretation.

Our setting (i.e. algebras of observables + states) contains standard probability theory, at least in the case
where the algebra is commutative.

Let's agree that an observable is a self-adjoint element of the algebra.

However in general any observable a∈𝒜 define a commutative (C∗-)algebra C∗(a) and therefore any state
define a probability measure on Σ(C∗(a))=𝜎(a)⊆ℝ.

This can be generalised to a set of commuting observables (a1, . . . , an) which give the Abelian algebra
C∗(a1, . . . ,an) and a measure on Σ(C∗(a1, . . . ,an)), the set of the pure states (i.e. the multiplicative states)
are uniquely labeled by n reals numbers {(𝜔(a1),...,𝜔(an)):𝜔∈Σ(C∗(a1,...,an))}⊆ℝn So we can identify
Σ(C∗(a1, . . . , an))= 𝜎(a1) × ⋅ ⋅ ⋅ × 𝜎(an) ⊆ ℝn and any state on this algebra as a probability measure on ℝn

with a support on that set.

However in general irreducible representations are not one dimensional if the algebra is non-commutative
and they do not corresponds to multiplicative functionals, nor to a probabilistic situation.

Purification. We also saw last time that if a state 𝜔 dominates another, e.g. 𝜔1 (that is if 𝜔1(a)⩽ C𝜔(a)
for any a⩾0) then there exists a non-trivial self-adjoint operator in 𝜑𝜔(𝒜)′ and therefore there exists also
an orthogonal projection P ∈ 𝜑𝜔(𝒜)′ and using it is not-difficult to see that H𝜔 splits into a direct sum
H𝜔 = V ⊕W and that 𝜑𝜔 restricts leaves these subspaces invariant and restricts to a sub-representation of
𝒜, so we have 𝜑𝜔 =𝜑(1) ⊗𝜑(2).

Given a representation 𝜑 on H we can construct a whole family of states associated to it, called its folium
they are of the form, for example of a state vector

𝜔𝜓(a)=⟨𝜓,𝜑(a)𝜓⟩

where 𝜓 is a unit vector in H. Or mixures of state vectors 𝜓1, . . . , 𝜓n with weights 𝜆1, . . . ,𝜆n such that
𝜆1 + ⋅ ⋅ ⋅ +𝜆n =1 and

𝜔(a)=�
i

𝜆i⟨𝜓i,𝜑(a)𝜓i⟩=Tr(�
i

𝜆i|𝜓i⟩⟨𝜓i|𝜑(a))

where |𝜓i⟩⟨𝜓i| denotes the rank-1 operator on H given by |𝜓i⟩⟨𝜓i|𝜑=𝜓i⟨𝜓i,𝜑⟩ for any 𝜑∈H. More generally
we can replace ∑i 𝜆i|𝜓i⟩⟨𝜓i| by any trace class, positive operator 𝜌∈ℒ(H). This operator is usually called
a density matrix. Recall that Tr is defined on ℒ1(H) by

Tr(A)=�
n

⟨en, Aen⟩, A∈ℒ1(H)={{{{{{{{{{{{{{{{{{{{{{{{A∈ℒ(H):�
n

|⟨en, Aen⟩|<∞}}}}}}}}}}}}}}}}}}}}}}}}

(the definition does not depend on the basis). So a general element of the folium of 𝜑 is given by a density
matrix 𝜌

𝜔𝜌(a)=Tr(𝜌𝜑(a)).

Note that 𝜔𝜌 is a vector state for its own GNS representation 𝜑𝜔𝜌, i.e.

𝜔𝜌(a)=⟨Ω𝜔𝜌,𝜑𝜔𝜌(a)Ω𝜔𝜌⟩H𝜔𝜌.

Corollary 1. Any vector state of an irreducible representation is pure.
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I will not prove the following two interesting results.

Theorem 2. The folium of a representation and the set of vector states of a representation are norm closed
subsets in the space of all states 𝒮.

Theorem 3. (Fell) The folium of a faithful representation is weakly-∗ dense in the set of all states.

Remark 4. From a physical point of view we can only do a finite amount of experiments (and with finite
precision), which means that we can only identify a weak-∗ neighborhood of set of all possible states of the
system, i.e. a subset of the form

{𝜔∈𝒮: |𝜔(ai)−vi| ⩽𝜀i for all i =1, . . . ,n}

where (ai)i are observables and 𝜀i > 0 and vi ∈ ℝ. So any faithful representation is as good to be used to
approximate a realistic situation. However for mathematical purposes sometimes is useful to single out
specific representations which have additional properties.

1 The quantum world

As we saw, it the commutative setting we are able to have states (the pure states) which assign precise values
to all observables and where the only source of variance is then described by a probabilistic model. That's
something not possible anymore when dealing with microscopic phenomena. This has been discovered at
the beginning of the 1900 in various situations and experiments:

• Stern–Gerlach experiment show that the magnetic moment of the electron M =(Mx,My,Mz) is quan-
tized (so does not corresponds to the state space which we expect from a vector in 𝕊2) and moreover
it seems not to agree with probabilistic reasoning.

• Black-body radiation. The thermodynamical analysis of a particular situation (Plack) at very low
temperatures (i.e. ∼0∘Κ≈273∘C) pointed out (Einstein) that the degrees of freedom (i.e. different
possible states) in the electromagnetic radiation field (light) has to be discrete and not continuous.
I.e. light is composed by discrete entities, i.e. photons. That is somehow the set of different possible
(pure) states is discrete and not continuous. Planck's constant

h=6.62607004×10−34 m2kg/s.

• Heisenberg's analysis of a quantum particle shows that when you try to measure the position and
the speed of a particle you get in trouble. In the sense that measurements of position will disturb the
velocity of the particle and vice-versa and one should make the hypothesis that both position q and
momentum p=mv (i.e. mass times velocity) cannot be determined in any conceivable state 𝜔 with
arbitrary precision, i.e.

Δ𝜔(q)Δ𝜔(p)⩾ ℏ
2 (1)

This is Heisenberg's indetermination principle. It somehow implies that the states of a particle
cannot be labelled by position and momentum variables, i.e. we need to forbid states which have
precise values of position and momentum. Note that if (q, p) were forming a commutative algebra
then you will have such states like 𝛿𝛼,𝛽(dq, dp) which give precise value to p=𝛼 and q=𝛽.

The set of all (elementary) states of a quantum system cannot be put in direct correspondence with the
possible values of all the observables. And in particular it is suggested that the set of elementary states is
discrete and not continuous.
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In classical mechanics the state of a particle is described by a point in the phase space (q, p) of positions and
momenta. Any point is possible and any two very nearby points are conceptually distinct. But the existence
of the elementary quantum h suggests that in every small volume element of size 𝛿q 𝛿p ≈ h there is only
one possible quantum state for a particle.
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One could put in question the mathematical framework (i.e. restricting states or observables), but actually
our setting contains a way out because allows us to introduce non-commutative algebras.

This was the conclusion of Heisenberg and he created matrix mechanics, while somehow Schrödinger
constructed a different model for the states (i.e. wave-functions constrained by PDEs) and he created wave
mechanics. Dirac later showed that the two are equivalent descriptions.

2 The quantum particle

We want now to construct a physical system (observables+states) that encodes Heisenbergs indetermina-
tion principle for the position q and momentum p of a particle. So the C∗-algebra of observables 𝒜 should
contain the C∗-algebra 𝒬 of all the bounded functions f (q) of q and the C∗-algebra 𝒫 of all the bounded
functions g(p) of p but I need to rule out that q, p commutes otherwise I violate Heisenberg principle
unless I restrict the set of states. But restricting the set of states is mode difficult than dealing with a non-
commutative algebra because we have more structure on 𝒜 than on 𝒮.

So we postulate that [a,b]≠0 at least for some a∈𝒬 and b∈𝒫 and we let 𝒜 to be the smallest C∗ algebra
containing the abelian subalgebras 𝒬, 𝒫. In order for this to describe a single degree of freedom we require
that Σ(𝒬)≈ℝ and Σ(𝒫)≈ℝ.

Next week we will specify completely the structure of this algebra and study its representations.
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