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1 The quantum particle
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We want now to construct a physical system (observables+states) that encodes Heisenberg's indetermina-
tion principle

Δ𝜔(q)Δ𝜔(p)⩾ ℏ
2 (1)

for the position q and momentum p of a particle and other experimental observations.

Today we want to explore how non-commutativity is related to the indetermination principle (1) and also
to the notion of “complementarity”. Complementary observables are somehow observables which do not
allow simultaneous measurement, that is if we are able to have states in which one of the is completely
detemined, then the other has to be completely “undetermined”. Think about the Stern-Gerlach experiment
and the measurement of the magnetic moment in two orthogonal directions.

For discrete observables q,p Heisenberg's relations do not work very well since there are states where
Δ𝜔(q)=0. Also if we change way to measure q, i.e. we measure f (q) for continuous injective f :ℝ→ℝ,
then I should have the “same information” but somehow the dispertion is different and I can imagine to
make dispersion arbitrarily different.

Anyway let us see what we can get from (1). Observe that if a,b∈𝒜 and self-adjoint then (a+ i𝜆b)∗(a+
i𝜆b)⩾0 for any 𝜆∈ℝ and if 𝜔 is a state we have

0⩽𝜔((a+ i𝜆b)∗(a+ i𝜆b))=𝜔(a2)+𝜆2𝜔(b2)+ i𝜆𝜔(ab−ba),

therefore we need to have, letting [a,b]=ab−ba,

|𝜔(i[a,b])|⩽2(𝜔(a2))1/2(𝜔(b2))1/2.

So in any C∗ algebra we have the (Schrödinger–Robertons) relation

Δ𝜔(a)Δ𝜔(b)⩾ 1
2 |𝜔(i[a,b])|.

So if we want to implement Heisenberg's principle for a pair of complementary observables q, p a way is
to require that i[p,q] is constant element of 𝒜 and therefore

[q, p]= iℏ, (2)
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These are called canonical commutation relations Heisenberg's matrix mechanics consist in a model where
q, p are matrices satisfying the above relation. First problem: these cannot be finite dimensional matrices,
indeed if they were we could take the trace over the vector space ℂn they acts on and get

Tr([q, p])=�
n

⟨en, [q, p]en⟩=0, Tr(iℏ)= iℏn.. . .

not very nice. Moreover they cannot implemented even in an abstract C∗ algebra, indeed if q, p∈𝒜sa then

[qn, p]= iℏnqn−1

and therefore by the C∗ condition

nℏ‖q‖n−1=nℏ‖qn−1‖= ‖iℏnqn−1‖=‖[qn, p]‖⩽2‖p‖ ‖q‖n

which implies ‖p‖ ‖q‖⩾nℏ/2 if ‖q‖≠0. This is true for any n and so either ‖p‖ or ‖q‖ has to be infinite.

This somehow is to be expected because “the position” is not really a bounded observable. We cannot really
talk about the position of the particle as an element of a C∗-algebra but it is ok if the think to any bounded
function of q and an element of the C∗ algebra. So we need to avoid to talk about q and talk instead of a C∗

algebra 𝒬 which plays the role of the algebra of functions of the position, that is has to be a commutative
C∗ algebra without unit (in order to allow for non-compact spectrum).

At this point is not clear how to single out an algebra of observables which satisfies something like the
indetermination principle.

2 Non-commutativity and probability

To start simpler we consider first system which possess “finitely many” pure states. Think about the two
states in the Stern–Gerlach experiment. Let us assume we have two observables a,b which generates 𝒜 and
such that 𝜎(a),𝜎(b) are finite. Is not difficult to show that I can construct projections (𝜋k

a)k ⊆C∗(a) such
that 𝜋k

a𝜋ℓ
a =𝛿k,ℓ𝜋k

a, ∑k 𝜋k
a =1 and 𝜋k

af (a)= f (ak)𝜋k
a where {ak:k =1, . . . ,na}=𝜎(a) is an enumeration of

the spectrum of a. Let us also assume that C∗(a) and C∗(b) are maximally abelian subalgebras in 𝒜. Now
observe that ∑k 𝜋k

a𝜋ℓ
b𝜋k

a commutes with any h ∈ C∗(a) and therefore ∑k 𝜋k
a𝜋ℓ

b𝜋k
a ∈ C∗(a) by maximal

abelianity, and then there exists numbers �pℓ,k
b|a�k,ℓ such that

�
k

𝜋k
a𝜋ℓ

b𝜋k
a =�

k
pℓ,k

b|a𝜋k
a, ℓ=1, . . . ,nb.

Observe that by positivity of the various projectors 𝜋a,𝜋b we must have pℓ,k
b|a⩾0 and moreover ∑ℓ pℓ,k

b|a=1.

Therefore we have a set of probabilities �pℓ,k
b|a�k,ℓ which are generated intrinsically by the non-commuta-

tivity of the algebra, even before we consider the states on that algebra.

For any state 𝜔 we can construct a new state 𝜔a(h)=∑k 𝜔(𝜋k
ah𝜋k

a) and now observe that

𝜔a( f (a))=𝜔( f (a)), 𝜔a( f (b))=�
k,ℓ

f (bℓ)𝜔(𝜋k
a𝜋ℓ

b𝜋k
a)=�

ℓ,k
f (bℓ)pℓ,k

b|a𝜔(𝜋k
a)

so 𝜔a(𝜋ℓ
b)=∑k pℓ,k

b|a𝜔(𝜋k
a). So pℓ,k

b|a can be interpreted as the conditional probability to observe b=bℓ given
we have observed a=ak. Note also that the state 𝜔a is never pure if a,b do not commute.

3 Complementary observables in finite quantum system

Consider still systems with finitely many pure states. All the observables have to take only finitely many
values. So we can assume that they have all the same spectrum with n points and to be given by

Γ={𝛾k =e2𝜋ik/n}k=0, . . . ,n−1.
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We want to construct an algebra of two non-commuting observables u, v where both have the same spec-
trum (as above) and they are complementary. A natural way to understand complementarity using the
matrix pℓ,k

v|u is to impose that pℓ,k
v|u =1/n for any k, ℓ. The question is now, can do it? This would provide a

system where the two observable u,v are complementary. Indeed, if we can impose this condition we would
be able to construct states under which u has a definite value and v is uniform in Γ.

By GN theorem we can look for construction of this algebra as a family of operators in an separable Hilbert
space. Is clear we need at least a space of dimensions n otherwise we cannot accomodate the n different
eigenvalues Γ. By abuse of language u,v the representatives of u,v in the space ℒ(ℂn). Note that u,v have
to be unitary operators. Let (𝜑k)k be the eigenvectors of u, i.e. u𝜑k =𝛾k𝜑k and then take v𝜑k =𝜑k+1 with
k + 1 understood modulus n. Now observe that uv𝜑k = u𝜑k+1 = 𝛾k+1𝜑k+1 =𝛾k+1v𝜑k = (𝛾k+1/𝛾k)vu𝜑k for
any k =0, . . . ,n−1 so

uv=e2𝜋i/nvu.

Observe also that un =vn =1. In particular

0=(𝛾k
−1u)n −1=(𝛾k

−1u−1)�
ℓ=0

n−1

(𝛾k
−1u)ℓ

and from this we deduce that 𝜋k
u=∑ℓ=0

n−1 (𝛾k
−1u)ℓ satisfies u𝜋k

u =𝛾k𝜋k
u so 𝜋k

u is the orthogonal projection on
the span of 𝜑k.
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