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We introduce the Markov property and the basic objects in the theory of Markov processes:
the transition kernel and the construction of a canonical setup. We discuss basic examples
of Markov processes and some technical issues necessary to �tame� the continuum of time,
cadlag paths, right�continuous �ltrations and the Feller property. A fundamental result is
the strong Markov property.

1 The Markov property

Let E be a locally compact separable metric space (hence Polish) and E the Borel ���eld
(generated by open sets). We denote by F(E) (resp. Fb(E);F+(E)) the space of (E; E)
measurable real functions (resp. the bounded functions, the positive functions). C(E)
denotes the Banach space of bounded continuous functions with supremum norm and
C0(E) those vanishing at in�nity, that is those for which fx 2 E: jf(x)j > "g is compact
for all " > 0. Denote with P(E) the probabilities on (E; E) and with M(E) the signed
measures.

Let us be given a �ltered probability space (
;F ; (Ft)t;P) where t 2 I =R+ or N. and
let (Xt)t be a stochastic process with values in E. It is adapted if Xt 2̂ Ft (meaning that
Xt is Ft measurable) for all t.

A Markov process (in particular, Markov chain if t2N) is a process whose future can be
predicted from its current state, disregarding its past behaviour.

De�nition 1. The process (Xt)t is a Markov process if

E[f(Xt)jFs] =E[f(Xt)jXs]; s6 t; f 2Fb(E): (1)

(Markov property)

A probability kernel on E is a map �:E!P(E) such that x 7! �(x;B) is measurable for
every B 2E . Note that a probability kernel � can also be seen as a map �:Fb(E)!Fb(E)
or as a map �:M(E)!M(E) via

x2E 7! �f(x) :=

Z
E
f(y)�(x;dy); B 2E 7! ��(B) :=

Z
E
�(x;B)�(dx):
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Assuming that E is a Polish space (metrizable, separable, complete) and E = B(E) its
Borel �-�eld guarantees that there exists a regular version of the conditional probability
P(Xt2B jXs) namely a probability kernel Ps;t such that

E[f(Xt)jXs] =

Z
E
f(x)Ps;t(Xs; dx); P-a.s.; s6 t:

The family of kernels (Ps;t)s;t satis�es

Ps;uPu;t=Ps;t; P �Xs
¡1-a.s.

Using the Markov property (1) iteratively we deduce that, for all n > 1, f 2 Fb(En) and
s6 t16 ���6 tn,

E[f(Xt1; :::; Xtn)jFs] =
Z
En
f(x1; :::; xn)Ps;t1(Xs; dx1)

Y
k=1

n

Ptk;tk+1(xk; dxk+1)

and in particular

E[f(X0; Xt1; :::; Xtn)] =

Z
En+1

f(x0; x1; :::; xn)�0(dx0)P0;t1(x0; dx1)
Y
k=1

n

Ptk;tk+1(xk;

dxk+1) (2)

for all f 2Fb(En+1) and 06 t16 ���6 tn, where �0=P�X0
¡1 (the law of X0). This shows

that the law of the process (Xt)t (as a measure on the product space EI) is uniquely
determined by the family (Ps;t)s;t and �0.

To easily go backward, from the kernels to the law of the process we introduce the notion
of transition kernel.

De�nition 2. A transition kernel (or function) is a family of probability kernels P =
(Ps;t)s;t such that

a) Ps;uPu;t(x;B)=Ps;t(x;B) for all x2E, B 2E, s6 t2 I,

b) Ps;s(x; �)= �x for all s2 I.

Property (a) is called Chapman�Kolmogorov equation.

A transition kernel is homogeneous if Ps;t=Ps+h;t+h for all h> 0. In this case the kernel
depends only on t¡ s and we denote it by Pt= P0;t= Ps;s+t. This does not implies that
the Markov process is stationary.

Any non-homogeneous Markov process can be transformed into an homogeneous one by
introducing an extended state space Ê=R+�E and considering the new process X̂t=(t;
Xt).

Exercise 1. Show that the transition kernel P̂ for (X̂t)t is

P̂s;t((x; u); dydr)=Pu;u+t¡s(x; dy)�u+t¡s(dr):

From now on we will consider only homogeneous Markov processes (that is with homoge-
neous transition function) unless speci�es otherwhise.
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2 Some examples

Example 3. (Constant speed) The deterministic process Xt= x+ t is an (homogeneous)
Markov process with transition kernel

Pt(x; �)= �x+t; t> 0:

Small modi�cation of this example can produce already interesting behaviour for which
P0(x; �)= �x does not hold. Take E= f0g[ (¡1;¡1][ [1;+1) and let

P0 (0; �)=
1

2
�1+

1

2
�¡1; Pt(0; �)=

1

2
�1+t+

1

2
�¡1¡t; t > 0;

Pt(x; �)= Ix>0�x+t+ Ix<0�x¡t; x2Enf0g:

Then we have PtP0=P0Pt=Pt, but there is a �branching� at zero.

Example 4. Countable state Markov chain. The easiest situation is where E is countable
and time is discrete, in this case we consider the matrix

pi;j(t)=Pt(i; fjg); i; j 2E

which satisfy the equation

pi;j(t+ s)=
X
k2E

pi;k(t)pk;j(s); p0(i; j)= �i;j ; i; j 2E:

De�nition 5. A standard Brownian motion (Bt)t started in x is a real valued process such
that

a) it has independent increments;

b) Bt¡Bs�N (0; jt¡ sj) for all t > s;

c) it satis�es B0=x a.s.

De�nition 6. A Poisson process (Nt)t starting at n2N with intensity �>0 is an integer
valued process such that

a) it has independent increments;

b) Nt¡Ns�Poisson(�(t¡ s)) for all t > s;

c) it satis�es N0=n a.s.

De�nition 7. A compound Poisson process (Xt)t with jump probability �2P(R), intensity
� and starting at x2R is a real valued process such that

Xt=x+
X
n=1

Nt

Yn;
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where (Yn)n>1 is an iid sequence with law � and (Nt)t a Poisson process with intensity �.

All these processes are Markov processes. Compute their transition functions.

3 Canonical realization

The canonical space for the Markov process is the space 
can = EI endowed with the
product �-�eld Fcan. In this setting Xt(!)=!t is the canonical process on 
can and (FtX)t
the �ltration generated by (Xt)t, namely FtX= �(Xs: s6 t). Then we have

Theorem 8. For any � 2 P(E) and transition kernel P there exists a unique probability
P� on (
can;Fcan) such that (Xt)t is a Markov process with initial distribution � and

E�[f(Xt)jFsX] =Ps;tf(Xs); P¡ a.s.; s6 t; f 2Fb(E):

Proof. Show that the family of laws given by the expression (2) is consistent and then
apply Kolmogorov's extension theorem. �

Usefulness of this canonical realization is clear by the following pathwise version of the
Markov property. Let us introduce the shift operator �s: 
can!
can de�ned as �s!(t) =
!(t+ s) and denote Ps;x=P�x the canonical Markov process started in x2E.

Remark 9. Note that, for any F 2Fb(
can) the map x 7!Ex[F ] is measurable (Prove it
using a monotone class argument, see the proof below for an hint).

Theorem 10. The family of probabilities (Px)x satis�es the Markov property wrt. (FtX)t
if and only if

Ex[F � �sjFs] =EXs[F ]; Px-a.s.; F 2Fb(
can); s> 0: (3)

Proof. The �if� direction is clear. Let us consider the �only if� . Let F = f1(Xt1)���fn(Xtn)
then F � �s= f1(Xs+t1)���fn(Xs+tn) and the claim reads

Ex[f1(Xs+t1)���fn(Xs+tn)jFs] =EXs[f1(Xt1)���fn(Xtn)]

=Pt1(f1���Ptn¡2¡tn¡1fn¡1(Ptn¡tn¡1fn))(Xs)

which can be checked directly from the one step Markov property. In order to extend
the equivalence to all Fb(
can) we use the standard machinery of the monotone class
theorem. We take � as the family of sets of the form fXt1 2 B1; :::; Xtn 2 Bng which is
closed under intersection and H as the vector space of function F 2Fb(
can) satisfying (3).
It is clear that it is closed under monotone limits. But we already shown that functions
of the form f1(Xt1)���fn(Xtn) are in H so H contains also IA for A2�. This implies that
H=�(�)=Fb(
can). �
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The canonical process constructed via this theorem is very general but not very useful since
the �-�eld Fcan is too small to describe interesting events (e.g. jumps of the process, or its
continuity properties).

Example 11. Think about the homogeneous Markov process for which P0(x; �)= �x and
Pt(x; �)= � for t > 0 where �2P(E) is given. This process corresponds to a family of iid
variables and there is no relation whatsoever between states at di�erent times. So in general
we cannot expect any regularity from the sample paths of the process.

A function f : R>0! E is càdlàg if at every point it admit limit from the left and it is
continuous on the right, namely ft¡ = lims"tft exists and ft+= lims#tft = ft. We denote
�ft= ft+¡ ft¡ the jump of f in t.

Remark 12. The reader can prove the following properties of càdlàg functions:

a) If f :R>0!R is càdlàg and I �R>0 is a compact interval, then fs2 I : j�fsj>"g
is �nite for any "> 0. This implies that f has at most countably many jumps.

b) A càdlàg function is bounded on a compact interval.

c) A uniform limit of càdlàg functions is càdlàg.

Under some additional mild regularity properties for the transition kernel it is possible
to realise a canonical version of the Markov process on the space 
 of càdlàg paths on E
endowed with the �ltration (FtX)t (See Rogers & Williams, vol 1).

An additional improvement consists in taking the �ltration (Ft)t de�ned as Ft :=\s>tFsX.
This new �ltration has the property of being right continuous, namely Ft=Ft+ :=\s>tFs.
Peeking just a bit in the future does not give additional informations.

Note that (Gt+)t is always a right continuous �ltration for any �ltration (Gt)t. We can
similarly de�ne a left continuous �ltration (Gt¡)t by Gt¡ := _s<tGs. (Recall the meaning
of _).

We need to prove that a (FtX)t Markov process is still Markov under (Ft)t.

Lemma 13. Assume that (Xt)t is Markov wrt. (FtX)t, then if Pt:C0(E)!C0(E) for all
t > 0, the process is also Markov wrt. (Ft)t.

Proof. Take s; t>0, h>0, A2Fs�Fs+hX for all h>0 and use the (FtX)t Markov property
to have

E[f(Xt+h+s)IA] =E[Ptf(Xh+s)IA]:

Now observe that if f 2 Cb(E) then by assumption Ptf(Xh+s) 2 Cb(E) and by right
continuity of paths we have f(Xt+h+s)! f(Xt+s) and Ptf(Xh+s)!Ptf(Xs) as h&0. By
dominated convergence we conclude that E[f(Xt+s)IA] =E[Ptf(Xs)IA]. �

If E is locally compact it su�ces to verify that Pt sends continuous compactly supported
functions into continuous functions since on locally compact spaces we can approximate
continuous functions with continuous compactly supported ones.

5



De�nition 14. A transition kernel such that

a) Pt:C0(E)!C0(E) for all t> 0;

b) limtt#0kPtf ¡ f k! 0 for all f 2C0(E),

is said to satisfy the Feller property and the associated Markov process is called Feller.

Remark 15. Property b) is equivalent to require the pointwise limit f(x)= limt#0Ptf(x)
for all x2E and f 2C0(E). Property b) can fail if we replace C0(E) by C(E).

Exercise 2. Check that Brownian motion in Rn and compound Poisson process on a locally compact
space are Feller processes.

When a Markov process is realised as a family of probabilities (Px)x on (
cadlag;F ; (Ft)t)
where 
cadlag is the space of cadlag paths, (Ft)t is the right continuous �ltration considered
above, then we say that it is realised on the canonical setup. From now on, unless stated
otherwise, we will alway assume that we can construct a given Markov processes on the
canonical setup. This is a main technical assumption. Feller processes can be constructed
on the canonical setup.

To understand the reason for the canonical setup note that we can now consider very
interesting events, for example, the r.v.

limsup
t#0

Xt

'(t)

is F0 measurable but it is not F0X measurable, and on the product space ER>0 this r.v. is
not even measurable at all.

The transition from (FtX)t to (Ft)t does not add much, events in the immediate future of
the present are trivial, as stated by Blumenthal's 0-1 law:

Theorem 16. (Blumenthal's 0-1 law) If (Px)x is a Markov process wrt. (Ft)t and A2F0
then

Px(A)2f0; 1g:

Proof. IA=Ex[IAjF0] =PX(0)(A)=Px(A); Px-a.s. �

Example 17. Consider standard Brownian motion on R (starting in 0) and de�ne

� := inf ft > 0:Xt> 0g; � := inf ft > 0:Xt< 0g:

By symmetry we have P0(� =0)=P0(�=0). Moreover P0(� 6 t)>P0(Bt> 0)=1/2 for
all t > 0 so P0(� = 0)> 1/2. But now note that f� = 0g 2 F0 so by Blumenthal's 0-1 law
we deduce that P0(� =0)=P0(�=0)=1. Using continuity of paths we conclude that any
interval (0; ") contains a zero of BM almost surely and from this that BM is monotonic on
no interval.
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4 Stopping times

The canonical setup is a �rst device to �tame� the continuum of time. Another important
tool are stopping times which select of us interesting moments in the life of a Markov
process.

Let F1=_t>0Ft. Recall that (Ft :=Ft+X )t is de�ned to be right continuous.

De�nition 18. A r.v. T : 
! [0;1] is a stopping time relative to (Ft)t if fT 6 tg 2 Ft
for all t.

Several properties of stopping times are easy exercise to verify:

a) T is a stopping time i� fT < tg2Ft for all t;

b) for any open G�E the r.v. �G= inf ft> 0:Xt2Gg is a stopping time;

c) if � ; � are stopping times, then � ^�, � _� and � +� are stopping times;

d) if (�n)n is a sequence of stopping times, then infn �n; supn �n; liminfn �n; limsupn �n
are stopping times;

If G � E is not open it is more di�cult to decide if �G is a stopping time. We postpone
this problem to later stages of development of the theory.

De�nition 19. If � is a stopping time we let

F� := fA2F :A\f� 6 tg2Ft for all t> 0g:

Lemma 20. We have the following properties:

a) F� is a �-algebra and � 2̂ F� ;

b) if � 6� then F� �F�, if �n#� then F� =\nF�n;

c) if (Zt)t is (Ft)t adapted and right continuous then Z�I�<1 2̂ F�.

Proof. We will prove only the last one. Assume �rst that � takes only countably many
values (tn)n then

fZ�I�<16 a; � 6 tg=[nfZtn6 a; � = tn6 tg2Ft

for all t> 0, which implies that fZ�I�<16 ag 2 F�, hence measurability follows. For an
arbitrary stopping time � we approximate it from above with a sequence of stopping times
(�n)n taking countably many values. Speci�cally, we let

�n=
X
k>0

k+1
2n

Ik2¡n6�<(k+1)2¡n+(+1)I�=+1:
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Check that this is a stopping time. Why we approximated from above and not below?
Then �n#� and Z�n!Z� on f� <1g by right continuity of the paths. From the �rst part
of the proof we know already that fZ�nI�n<16 ag 2 F�n �F�m for every m> n. Finally
we can write

Z�I�<1= lim
n
Z�nI�n<1 2̂ \nF�n=F�: �

Remark 21. The condition � <1 is a bit ugly to carry on. Sometimes it is convenient
to add a �cemetery� state � to the state space E and de�ne E� = E [ f�g where � is
seen as an isolated point if E is compact or as the point at in�nity for non-compact E
(i.e. its neighborhood basis is the class of all complements of compact subsets of E). E�
is a compact separable metric space. In this case we denote by C0(E�) the functions
vanishing at �. The space of cadlag paths 
 over E� is assumed to have the property
that if !(s)=� for some s then !(t)=� for all t>s. This ensures that � is an absorbing
state for the Markov process and we can set !(1) = �. Transition kernels on E can be
naturally extended to E� by making � absorbing, i.e. Pt(f�g; �)= �� for all t> 0.
In this way it holds that Y� 2̂ F� for all E� valued cadlag paths (Yt)t. However such
conventions should be looked with care.

5 The strong Markov property

De�nition 22. A Markov process (Px)x satis�es the strong Markov property if for any
(Ft)t stopping time � and any F : [0;1)�
!R jointly measurable bounded function we
have

E[Y� � �� jF�] =EX(�)[Y�] on f� <1g Px�a.s.

Remark 23. The notation in this de�nition is a bit ambigous. On the left Y� � ��(!) =
Y (� (!); ��(!)!), while on the right we really mean EX(�)[Y�] = �(� ; X(� )) with �(t;

x)=Ex(Yt).

Proof. If � takes a countable number of values, by conditioning we reduce the proof to
the proof of the standard Markov property. In the general case, approximate � from above
by discrete stopping times as seen before. �

5.1 More on the Brownian zeros via strong Markov

In this part we will discuss the zeros of the Brownian motion exploiting the strong Markov
property. We will assume that the Brownian motion is realised on the space 
cont=C(R>0;
R) of continuous paths on R. This is always possible and in general certain properties of
the transition functions can guarantee that a Feller process does not make jumps. For the
moment we will just assume this.

Let Z be the random set

Z(!)= ft> 0:!(t)=0g:

This set is closed since we assume ! to be a continuous function. We want to show that,
similarly to a Cantor set, it is perfect (all the points are accumulation points), in particular
it is uncountable.
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Let us begin by noting that the Lebesgue measure �(Z) of Z is 0 almost surely. By Fubini's
theorem

Ex�(Z)=Ex

Z
0

1
IZ(s)ds=

Z
0

1
ExIZ(s)ds=

Z
0

1
Px(Xs=0)ds=0:

Proposition 24. Px�a.s. the set Z is perfect.

Proof. We need to show that every point of Z is a limit point of Z. Consider the stopping
time �a= infft>a:Xt=0g for every a>0. (We need to assume �a<1 a.s., how to get rid
of this?). Let A := f!: !(tn) = 0 for some sequence tn#0g and observe that IA � ��a= IAa
whereAa :=f!:!(tn)=0 for some sequence tn#�ag. The strong Markov property then gives

Ex[IA � ��ajF�a] =EX�a
[IA] =E0[IA] = 1;

since X�a=0 by path continuity and P0(A)=1 by Blumenthal's 0/1 law and the fact that
we already showed that every interval (0; ") contains zeros of the BM. Taking expectation
of this equality we conclude that Px(Aa)=1. So every �a is an accumulation point of zeros
from the right. On the other hand, a point s2Znf�a: a2Q; a> 0g is such that a6 �a<s
for a2Q\ [0; s] so it has to be an accumulation point of zeros from the left. �

Remark 25. Think how to remove the assumption that �a<1 a.s. in the proof above.

Remark 26. About uncountability of the perfect set Z. Assume that it is countable
fsig=Z then do the following construction. Let U1 a neighborhood of s1. Now look for the
next number in the sequence which is in U1, let it be sk, de�ne U2�U1 to be a neighborhood
of sk whose closure does not contain s1. Continue in this way to construct a sequence of
closed sets (U�n)n which are non-empty, compact and do not contain the initial part of our
sequence fsig. Form V =\nU�n which should be non�empty since it is the intersection of
a nested sequence of compact sets. But then the elements of V are accumulation points
of a subsequence of Z but surely it cannot be in the list fsig.

Remark 27. The complement Zc is the union of countably many disjoint open intervals.
The strong Markov property says that starting from the right of one of these intervals,
the process is a Brownian motion, however the same cannot be true starting from the left,
since in this case there is a �nite amount of time in which the process will not touch zero,
which we know is impossible from Brownian motion.

6 Some non-strong Markov processes.

Here are some examples where the strong Markov property fails.

1. Waiting, then constant speed. On the state space R>0 de�ne Px as follows.
For x > 0 let it be the law of the process Xt = x + t. For x = 0 let Px be the
measure under which Xt waits at zero for an exponential time after which it grows
at speed 1, namely Xt= (t¡ T )+ where T � E(1). It can be checked directly that
this is a Markov process with respect to the right�continuous �ltration (Ft)t. Let
� = inf ft > 0: Xt > 0g. This is a stopping time, but if we consider the function
F =X1 we have that (Xt� ��)=Xt+� = t with probability 1 while EX�(X1)< 1, so
the strong Markov property does not hold. Indeed this is not a Feller process.
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2. Brownian motion with a twist. Let Px be a Brownian motion for all x2Rnf0g
and let P0 = �!0 be the law concentrated on the constant path !0(t) = 0. This
is a Markov process and � = inf ft> 0:Xt = 0g a stopping time. But now X� = 0
and EX�[F ] = F (!0) while for x=/ 0 Ex[F � ��] is just a probability for a standard
Brownian motion.

3. Càgdàl paths. Finally, we give an example which does satisfy the Feller property
for the transition kernel, but which still fails the strong Markov property. In this
case, the failure is caused by the process not having right�continuous paths (recall
that right�continuous paths is one of our standing assumptions, so it's implicitly
in our proof of the strong Markov property). Let X be a left�continuous version of
the Poisson process which can be constructed by taking (Tn)n>1 E(1) iid random
variables and letting

Xt=
X
k>1

IT1+���+Tn<t; t> 0:

Let � = inf ft: Xt > 0g, then � = T1 and it is a stopping time with respect to
(Ft=Ft+X )t but not with respect to (FtX)t. In this case the strong Markov property
fails: the l.h.s. is equal to E1[F� ] while the r.h.s. is E0[F� ] because X� =0.
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