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We introduce the notion of martingale problem for Markov chains and use it to discuss
stochastic stability and recurrence properties of discrete state chains.

See also Chapter 1 of Prof. Eberle's �Markov Process� course.

1 Martingale problem

Let (Xn)n be a Markov chain on E and let f :E!R be a bounded function. One way to
describe the dynamics associated to the process (Xn)n is to use the decomposition of the
process f(Xn) as a martingale and a predictable process:

f(Xn)=Mn
f +An¡1

f ; n> 1:

There is only one such decomposition and it follows that An¡1
f =

P
k=0
n¡1 (Lf)(Xk), where

Lf = (� ¡ I)f , � = P1 the one step transition kernel and I the identity transition kernel.
The operator L: Fb(E)!Fb(E) is called the generator of the discrete time chains. The
martingale property of (Mn

f)n and the generator characterise completely the Markov chain.

Theorem 1. (Xn)n is a Markov chain with one�step transition kernel � i� for any f 2
Fb(E) the process

Mn
f := f(Xn)¡

X
k=0

n¡1
(Lf)(Xk); n> 0;

is a martingale.

The proof is left as an exercise.

We postpone to discuss the continuous time formulation of the martingale problem which
requires some analytical sophistication. Now we concentrate to illustrate the connection
between martingale and Markov properties and use martingale to establish basic criteria
for stability and recurrence of Markov chains.

The exterior boundary @D of a set D2E w.r.t. the Markov chain is given by

@D=[x2Dfsupp�(x; �)gnD:
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where the support supp � of the measure � is de�ned as the smallest closed set such that
j�j(Ac)=0. Open sets contained in (D[@D)c cannot be reached by the chain in one step
starting from D.

Example 2. For the simple random walk on Zd : @D= fy 2Zd: 9x2D: jx¡ y j=1g.

Recall that we denote with TD the hitting time of D: TD= inf fn> 0:Xn2Dg.

Interesting quantities of a Markov chain are:

a) The exit probability from D starting at x2D : Px(TDc<1);

b) The �law� of the exit point: Px(XTDc2B; TDc<1);

c) The mean exit time: Ex[TDc];

d) The average occupation of B before exiting D:

GD(x;B)=Ex[
X
k=0

TDc¡1

IB(Xk)]=
X
k>0

Px(Xk2B; k <TDc);

(Green kernel of D);

e) The Laplace transform of the exit time: Ex[e
¡�TDc];

f) The Laplace transform of the occupation time of B: Ex

h
e¡�

P
k=0
TDc¡1IB(Xk)

i
;

Let v; c2F+(E) and consider the process

Mn := v(Xn)+
X
k=0

n¡1

c(Xk)=Mn
v+

X
k=0

n¡1

(Lv+ c)(Xk)

where we made explicit its Doob's decomposition. If Lv + c 6 0 we deduce that (Mn)n
is a non-negative supermartingale, the same applies to the stopped process Mn

T =Mn^T
where T is a stopping time. By the supermartingale convergence theorem the limitM1 :=

limnMn exists almost surely and in particular we have Mn
T!MT a.s. everywhere, even on

fT =+1g.

Let now D2E , T =TDc, v; f 2F+(D) such that Lv+ c6 0 on D and v> f on @D. Then

MT > v(XT)IT<1+
X
k=0

T¡1

c(Xk)> f(XT)IT<1+
X
k=0

T¡1

c(Xk)

and by Fatou we conclude

u(x) :=Ex

"
f(XT )IT<1+

X
k=0

T¡1

c(Xk)

#
6Ex[MT ]6Ex[M0] = v(x); x2D:
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Then all non�negative solutions to

Lv+ c=0 onD
v= f on @D

(1)

dominate u. Let now assume that T <1 a.s., then by the Markov property we have, for
all x2Dn@D

Ex[f(XT)+
X
k=0

T¡1

c(Xk)jF1] =Ex[f(XT)+
X
k=1

T¡1

c(Xk)jF1] + c(X0)

=Ex[(f(XT)+
X
k=0

T¡1
c(Xk)) � �1jF1] + c(X0)

=EX1[f(XT)+
X
k=0

T¡1

c(Xk)] + c(X0)= u(X1)+ c(X0)

since T > 1 Px¡ a:s: if x2Dn@D. From this we conclude that

0=Ex[u(X1)+ c(x)¡u(x)] = (Lu+ c)(x); x2Dn@D

and moreoever u(x)= f(x) if x2@D. So u is a solution of the problem (1). On the other
hand, if v is a solution to (1) and f is a bounded function then we have u= v since all the
inequalities in the above supermartingale argument become equalitites. That is, solution
of the above problem are unique.

Remark 3. Extension to absorbed chains are discussed in Eberle's notes.

2 Recurrence for countable Markov chains

These results hints to the link between superharmonic functions (i.e. Lv6 0) and asymp-
totic behaviour of the process. In order to understand better this connection we consider
the case of Markov chains on a countable state space E.

Introduce the �rst return time to A2E as

TA
+ := inf fn> 1:Xn2Ag

and let Tx
+=Tfxg

+ for x2E.

De�nition 4. A state x 2 E is recurrent if Px(Tx
+ <1) = 1 otherwise is transient. Is

positive recurrent if Ex[Tx
+]<+1.

Let Nx = #fn > 1: Xn = xg =
P

n>1 IXn=x the number of visits of x 2 E. By strong
Markov, recurrence is equivalent to require that Px(Nx = +1) = 1. If x is transient we
have Px(Nx=+1)= 0 (see below for the proof).
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Introduce a sequence of passage times at x2E: Tx0=0, Txn= inffk>Txn¡1 : Xk=xg, n>1.
For n> 1, if Txn¡1<+1 let �xn :=Tx

n¡Txn¡1.

Proposition 5. (Regeneration) Let x2E and n>1. Conditionally on fTxn<+1g the
law of �x

n+1 is independent of (Tx
1; :::; Tx

n) and

P(�x
n+1= k jTxn<+1)=Px(Tx= k); k 2N[f+1g:

Proof. Exercise. �

Lemma 6. For n> 0 we have that Px(Nx>n)= fx
n with fx :=Px(Tx<+1).

Proof. Use strong Markov. �

Remark 7. For any r.v. X: 
!N we have

E[X] =E[
X
k>0

1k6X] =
X
k>0

P(X > k) (2)

Theorem 8. There is the following dychotomy:

i. Px(Tx<1)= 1)Px(Nx=1)=1 and
P

n>1�
n(x; x)=+1;

ii. Px(Tx<1)< 1)Px(Nx=1)=0 and
P

n>1�
n(x; x)<+1 .

Proof. If fx=Px(Tx<1)=1 then by Lemma 6 we have

Px(Nx=+1)= lim
n!1

Px(Nx>n)= lim
n!1

fx
n=1

and then Px(Nx=1) = 1 and 1=Ex[Nx] =Ex[
P

n>1 1Xn=x] =
P

n>1�
n(x; x). On the

other hand if fx< 1 then by eq. (2) and Lemma 6,

X
n>1

�n(x; x)=Ex[Nx] =
X
n>0

Px(Nx>n)=
X
n>0

fx
n=

1
1¡ fx

<+1;

which implies that Px(Nx=+1)= 0. �

Introduce a transitive relation x! y on states x; y2E when one of the following equivalent
condition holds

a) Px(Ty<+1)=1;

b) �n(x; y)> 0 for some n> 0;

c) there exists a sequence of states (xk)k=0;:::;n such that x0 = x; xn = y and �(xk;
fxk+1g)> 0.
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Let x$ y the equivalence relation given by x! y and y! x. This equivalence relation
induce a partition of E into equivalence classes, usually called communication classes.

When there is only a class we say that the chain is irreducible.

Theorem 9. All the states in the same class are of the same type (either transient or
recurrent).

Proof. If x$ y then there are N;M such that �N(x; y)> 0 et �M(y; x)> 0. A simple
bound gives

�2N+n+2M(x; x)> �N(x; y)�N+n+M(y; y)�M(y; x)> [�N(x; y)�M(y; x)]2�n(x; x)

for all n> 1. Let �= �N(x; y)�M(y; x)> 0, thenX
k>0

�k(x; x)>
X

k>2N+2M

�k(x; x)>�
X

k>N+M

�k(y; y)>�2
X
k>0

�k(x; x)

and then the states x; y are both either transient or recurrent. �

Remark 10. An irreducible chain is either recurrent or transient.

Proposition 11. A �nite set A�E such that �(x;Ac)= 0 for all x2A contains at least
one recurrent state. A �nite irreducible chain is recurrent.

Proof. Let #A<+1 and assume that for all z 2A, Pz(Nz=+1)=0. Fix x2A, for all
z 2A eq. (?) gives

Px(Nz> r)=Px(Ty<+1)Pz(Nz> r):

Taking limits for r!+1 we get Px(Nz =+1) =Px(Tz <+1)Pz(Nz=+1) = 0 for all
z 2A and as a consequence

1=Px(\z2AfNz<+1g)=Px(
X
z2A

Nz<+1)=Px(
X
n>0

1Xn2A<+1)

since
P

z2ANz=
P

z2A
P

n>0 1Xn=z=
P

n>0 1Xn2A is the time passed in A by the chain.
Since the set A is closed we have Px(Xn 2 A) = 1 for all n> 0 which should imply that
the time spent in A is in�nite. A contradiction. �

3 Forster�Lyapounouv criteria for recurrence

We assume that the chain is irreducible.

Theorem 12. A discrete Markov chain is

a) Transient i� there exists V 2 F+(E) and a set A � E and a state y 2 E such that
LV 6 0 on Ac and V (y)< [infAV ];
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b) Recurrent i� there exists V 2F+(E) such that #fLV >0g<1 and #fV 6N g<1
for all N > 0.

c) Positive recurrent i� there exists V 2F+(E) such that #fLV >¡1g<1.

Proof. Case (a). Consider the processMn=V (Xn^TA) is a non�negative supermartingale.
By optional stopping

V (y)>Ey[V (Xn^TA)]>Ey[V (XTA)ITA<1]>
h
inf
A
V

i
Py(TA<1);

so if V (y)< [infAV ] we obtain Py(TA<1)< 1, that is the chain is transient. Conversely,
if the chain is transient, we can take V (x)=Px(TA<+1).

Case (b). Let A= fx:LV >0g and let DN=fx:V (x)>N g which by assumption has �nite
complement for all N . Then Px(TDN <1)=1 for all x2E. By optional stopping, for all
x2E,

V (x)>Ex[V (XTDN^TA)]>Ex[V (XTDN
)ITDN6TA]>NPx(TDN6TA)>NPx(TA=+1);

and taking N!1 we obtain Px(TA=+1)=0, so the chain is recurrent. Now assume that
the chain is recurrent and consider a �nite set A and a decreasing sequence of sets (BN)N
with �nite complements and such that \NBN=? and let VN(x)=Px(TBN<TA) which is an
harmonic function on En(A[DN) such that VN=1 on BN and VN=0 on A. By recurrence
we have VN(x)&Px(+1= TA) = 0 for all x 2E and we can �nd a sequence (Nk)k such
that V (x)=

P
k VNk(x)<1 for every x (by a diagonal argument). This function satis�es

the required conditions since V (x)>Nk on DNk and if x2DN we have LVN(x)6 1¡ 1=0
so LV 6 0 on Ac.

Case (c). We let A= fLV >¡1g and consider

V (x)> lim
n

Ex[V (Xn^TA)+ (n^TA)]>Ex[TA]

which implies then that the chain is positive recurrent. On the other hand if the chain is
positive recurrent, then let V (x) =Ex(TA) for an arbitrary �nite set A and check that V
satis�es the assumptions. �

3.1 Recurrence and transience of random walks

The random walk on Zd has generator

Lf(x)= 1

2d

X
y:y�x

[f(y)¡ f(x)]

where y � x, jx ¡ y j = 1. The chain is irreducible. We want to show that this chain
is recurrent only if d 6 2. If f varies slowly then we have Lf(x) ' �f(x) and if we let
V (x)= jxj2� we have

LV (x)' (2�)(d+2�¡ 2)jxj2�¡2
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so for d > 2 we can �nd �< 0 such that LV 6 0 outside a ball B(0; r0) (taking accounts
errors in the above approximations) and V is decreasing at in�nity so for any x we can
arrange to have V (x) < infB(0;r0)V . When d = 1 we need to choose � 2 (0; 1 / 2) to
ensure V (x)!+1 as jxj !+1. For d= 2 the right function to look for is of the form
V (x)= (logjxj2)� so that

�V (x)' 4�(�¡ 1)
jxj2 (logjxj2)�¡2

and taking �2 (0; 1) gives a function which satis�es the recurrence criterion.

3.2 Harris recurrence of sets in general state spaces

We consider now the situation where the state space is a general Polish space (and E the
Borel �-algebra). In this case the Forster�Lyapounouv conditions are not as tight. However
the existence of certain superharmonic functions implies Harris recurrence.

De�nition 13. A set A2E is Harris recurrent if Px(TA
+<1)=1 for all x2A. Is positive

recurrent if Ex[TA
+]<1 for all x2A.

Proposition 14.

a) If there exists a function V 2F+(E) such that LV 60 on Ac and TfV >cg<1 Px�a.s.
for all x2E and c> 0 then the set A is Harris recurrent.

b) If there exists a function V 2F+(E) such that LV 6¡1 on Ac and �V <1 on A
then the set A is positive recurrent.

Proof. For (a) the proof goes as in the discrete setting. For (b) we deduce �rst that
Ex[TA]6V (x) and then by a one�step computation deduce that Ex[TA

+] =Ex[EX1[TA
+]] =

(�V )(x)<1. �

Example 15. (State space model on Rd) Consider the following Markov chain on Rd

Xn+1=Xn+ b(Xn)+Wn

where (Wn)n are iid with mean zero and covariance Cov(W i; W j) = �ij. We consider the
function V (x)= jxj2/". Then

"(�V )(x)=E[jx+ b(x)+W1j2]¡ jxj2=2hx; b(x)i+ jb(x)j2+ d:

By choosing " small enough we can see that the su�cient condition for positive recurrence
holds for A=B(0; r) and r su�ciently large.
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