

Markov Processes – Problem Sheet 10.

Tutorials by Nikolay Barashkov <s6nibara@uni-bonn.de>, Robert Crowell <crowellr@googlemail.com>. Solutions will be collected Tuesday January 16th during the lecture. At most in groups of 2.

Exercise 1. (GIBBS SAMPLER FOR THE ISING MODEL). [5pts] Consider a finite graph (V, F) with n vertices of maximal degree Δ . The Ising model with inverse temperature $\beta \ge 0$ is the probability measure μ_{β} on $\{-1,1\}^V$ with mass function

$$\mu_{\beta}(\eta) = \frac{1}{Z(\beta)} \exp\left(\beta \sum_{x \sim y} \eta(x) \eta(y)\right),$$

where $Z(\beta)$ is the normalization constant and $x \sim y \Leftrightarrow \{x, y\} \in F$.

- a) Show that given $\eta(y)$ for $y \neq x$, $\eta(x) = \pm 1$ with probability $(1 \pm \tanh(\beta m(x, \eta)) / 2)$, where $m(x, \eta) := \sum_{y \sim x} \eta(y)$ is the local magnetization in the neighbourhood of x. Hence determine the transition kernel π for the Gibbs sampler with equilibrium μ_{β} .
- b) Prove that for any $t \in \mathbb{N}$,

$$\mathcal{W}^{1}(\nu\pi^{t},\mu\beta) \leqslant \alpha(n,\beta,\Delta)^{t} \mathcal{W}^{1}(\nu,\mu_{\beta}) \leqslant \exp\left(-\frac{t}{n}(1-\Delta \tanh(\beta))\right) \mathcal{W}^{1}(\nu,\mu_{\beta}),$$

where $\alpha(n, \beta, \Delta) = 1 - (1 - \Delta \tanh(\beta)) / n$, and \mathcal{W}^1 is the transportation metric based on the Hamming distance on $\{-1, 1\}^V$. Conclude that for $\Delta \tanh(\beta) < 1$, the Gibbs sampler is geometrically ergodic with a rate of order $\Omega(1/n)$. Hint: You may use the inequality

 $|\tanh(y+\beta)-\tanh(y-\beta)| \leq 2 \tanh(\beta)$ for any $\beta \geq 0$ and $y \in \mathbb{R}$.

c) The mean-field Ising model with parameter $\alpha \ge 0$ is the Ising model on the complete graph over $V = \{1, ..., n\}$ with inverse temperature $\beta = \alpha/n$. Show that for $\alpha < 1$, the ε -mixing time for the Gibbs sampler on the mean field Ising model is of order $O(n \log n)$ for any $\varepsilon \in (0, 1)$.

Exercise 2. (BOUNDS FOR ERGODIC AVERAGES IN THE NON-STATIONARY CASE) [5pts] Let (X_n, P_x) be a

Markov chain with transition kernel π and invariant probability measure μ , and let

$$A_{b,n}f = \frac{1}{n} \sum_{i=b}^{b+n-1} f(X_i).$$

Assume that there are a distance d on the state space E, and constants $\alpha \in (0,1)$ and $\bar{\sigma} \in \mathbb{R}_+$ such that

- (A1). $\mathcal{W}_d^1(\nu\pi,\tilde{\nu}\pi) \leq \alpha \mathcal{W}_d^1(\nu,\tilde{\nu})$, for all $\nu,\tilde{\nu} \in \mathcal{P}(E)$, and
- (A2). Var_{$\pi(x,\cdot)$} $(f) \leq \bar{\sigma}^2 ||f||^2_{\text{Lip}(d)}$ for all $x \in E, f: E \to \mathbb{R}$ Lipschitz.

Prove that under these assumptions the following bounds hold for any $b, n, k \ge 0, x \in E$, and for any Lipschitz continuous function $f: E \to \mathbb{R}$:

a)
$$\operatorname{Var}_{x}[f(X_{n})] \leq \sum_{k=0}^{n-1} \alpha^{2k} \bar{\sigma}^{2} \|f\|_{\operatorname{Lip}(d)}^{2}.$$

b) $|\operatorname{Cov}_x[f(X_n), f(X_{n+k})]| = |\operatorname{Cov}_x[f(X_n), \pi^k f(X_n)]| \le \alpha^k (1 - \alpha^2)^{-1} \bar{\sigma}^2 ||f||^2_{\operatorname{Lip}(d)}.$

c)
$$\operatorname{Var}_{x}[A_{b,n}f] \leq \frac{1}{n} \frac{\bar{\sigma}^{2} \|f\|_{\operatorname{Lip}(d)}^{2}}{(1-\alpha)^{2}}.$$

d)
$$|\mathbb{E}_{x}[A_{b,n}f] - \mu(f)| \leq \frac{1}{n} \frac{\alpha^{b}}{1-\alpha} \int d(x,y) \mu(\mathrm{d}y) ||f||_{\mathrm{Lip}(d)}.$$

e)
$$\mathbb{E}_{x}[|A_{b,n}f - \mu(f)|^{2}] \leq \frac{1}{n} \frac{1}{(1-\alpha)^{2}} \Big(\bar{\sigma}^{2} + \frac{\alpha^{2b}}{n} (\int d(x,y)\mu(\mathrm{d}y))^{2} \Big) \|f\|_{\mathrm{Lip}(d)}^{2}$$

Exercise 3. (EQUIVALENT DESCRIPTIONS FOR WEIGHTED TOTAL VARIATION NORMS) [5pts] Let $V: E \to (0, \infty)$ be a measurable function, and let $d_V(x, y):=(V(x)+V(y))1_{x\neq y}$. Show that the following identities hold for probability measures μ, ν on (E, \mathcal{E}) :

$$\begin{aligned} \|\mu - \nu\|_{\mathrm{TV}} &= \left\| \frac{\mathrm{d}\mu}{\mathrm{d}\lambda} - \frac{\mathrm{d}\nu}{\mathrm{d}\lambda} \right\|_{L^1(V\cdot\lambda)} \\ &= \sup\left\{ |\mu(f) - \nu(f)| \colon f \in \mathcal{F}(E) \ s.t. \ |f| \leqslant V \right\} \\ &= \sup\left\{ |\mu(f) - \nu(f)| \colon f \in \mathcal{F}(E) \ s.t. \ |f(x) - f(y)| \leqslant d_V(x, y) \ \forall x, y \in E \right\} \\ &= \inf\left\{ \mathbb{E}[d_V(X, Y)] \colon X \sim \mu, Y \sim \nu \right\} \end{aligned}$$