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Solutions will be collected Tuesday January 23rd during the lecture. At most in groups of 2.

Exercise 1. (Infinitesimal characterization of invariant measures). [5pts] Consider a time-
homogeneous continuous time Markov chain Xt =YNt

where (Nt) is a Poisson process with constant
intensity λ>0, and (Yn) is an independent Markov chain with transition matrix π on a finite state
space E.

a) Show that the transition function is given by

pt(x, y)=Px[Xt=y]= exp(tL)(x, y),

where L=λ(π−I) and exp(tL) is the matrix exponential. Hence conclude that (pt)t>0 satisfies
the forward and backward equation

dpt
dt

=ptL=Lpt for t> 0.

b) Prove that a probability measure µ on E is invariant for (pt) if and only if

∑

x∈E

µ(x)L(x, y)= 0 for any y ∈E.

c) Show that the transition matrices are self-adjoint in L2(µ), i.e.,

∑

x∈E

µ(x)f(x)ptg(x)=
∑

x∈E

µ(x)ptf(x)g(x), for any t> 0, f , g:E→R,

if and only if the generator L satisfies the detailed balance condition w.r.t. µ. What does this
mean for the process?

Exercise 2. (Simple exclusion process) [5pts] Let Zn
d=Z

d/(nZ)d denote a discrete d-dimensional

torus. The simple exclusion process on E= {0, 1}Zn
d

is the Markov process with generator

Lf(η)=
1
2d

∑

x∈Zn
d

∑

y:|x−y |=1

I{η(x)=1,η(y)=0}(f(η
x,y)− f(η))

where ηx,y is the configuration obtained from η by exchanging the values of x and y. Show that any
Bernoulli measure of type

µp=⊗x∈Zn
dνp, νp(1)= p, νp(0)= 1− p,

p∈ [0, 1] is invariant. Why does this not contradict the fact that any irreducible Markov process on a
finite state space has a unique stationary distribution? (You may assume the statements of Exercise 1).
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Exercise 3. (Immigration-death process) [5pts] Particles in a population die independently with
rate µ>0. In addition, immigrants arrive with rate λ>0. Assume that the population consists initially
of one particle.

a) Explain why the population size Xt can be modeled by a birth-death process with rates b(n)=λ

and d(n)=nµ.

b) Show that the generating function G(s, t)=E(sXt) is given by

G(s, t)= (1+ (s− 1)e−µt)exp

(

λ

µ
(s− 1)(1− e−µt)

)

.

c) Deduce the limiting distribution of Xt as t→∞.

Exercise 4. (A non-explosion criterion for jump processes) [5pts] Suppose that qt(x,
B)=λt(x)πt(x, B) where πt is a probability kernel on (E, E) and λt : E→ [0, ∞) is a measur-
able function. We consider the minimal jump process ((Xt), Pt0,x0

) with jump times (Jn) and positions
(Yn) defined by the following algorithm:

1. Set J0= t0 and Y0= x0.

2. For n=1, 2, .. do

i. Sample En∼Exp(1) independently of Y0, ..., Yn−1 and E0, ..., En−1;

ii. Set Jn= inf
{

t>Jn−1:
∫

Jn−1

t
λs(Yn−1)ds>En

}

;

iii. Sample Yn|(Y0, ..., Yn−1, E0, ..., En)∼ πJn(Yn−1, ·).

a) Show that if λ̄ : = supt>0 supx∈Eλt(x)<∞, then the explosion time ζ= supJn is almost surely
infinite.

b) In the time-homogeneous case, given σ(Yk : k∈Z+),

Jn=
∑

k=1

n
Ek

λ(Yk−1)

is a sum of conditionally independent exponentially distributed random variables. Conclude that
the events {Y <∞} and {

∑

k=0
∞ (λ(Yk))

−1<∞} coincide almost surely (apply Kolmogorov’s 3-
series theorem).
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