

Markov Processes – Problem Sheet 6.

Tutorials by Nikolay Barashkov <s6nibara@uni-bonn.de>, Robert Crowell <crowellr@googlemail.com>. Solutions will be collected Tuesday December 5th during the lecture. At most in groups of 2.

Exercise 1. (ERGODICITY) [2 pts] Let $((X_n)_{n\in\mathbb{N}}, \mathbb{P})$ be a canonical stationary process with state space E, and let $\mathcal{J} = \{A : A = \Theta^{-1}(A)\}$ be the σ -algebra of shift invariant events. Prove that for $F : \Omega \to \mathbb{R}$ the following two properties are equivalent:

- i. F is \mathcal{J} -measurable.
- ii. $F = F \circ \Theta$

Conclude that \mathbb{P} is ergodic if and only if any shift-invariant function $F: \Omega \to \mathbb{R}$ is \mathbb{P} -almost surely constant.

Exercise 2. (ROTATIONS OF THE CIRCLE) [3 pts] Let $\Omega = \mathbb{R}/\mathbb{Z} = [0,1]/\sim$ where $0 \sim 1$. Consider the rotation $\theta(\omega) = \omega + a \pmod{1}$ with a = p/q, $p, q \in \mathbb{N}$ relatively primes.

- a) Show that for any $x \in \Omega$, the uniform distribution \mathbb{P}_x on $\{x, x+a, x+2a, ..., x+(q-1)a\}$ is θ -invariant and ergodic.
- b) Determine all θ -invariant probability measures on Ω , and represent them as a mixture of ergodic ones.

Exercise 3. (ERGODICITY FOR MARKOV CHAINS) [5 pts] Suppose that $((X_n)_n, \mathbb{P}_x)$ is a canonical time-homogeneous Markov chain, and let μ be an invariant probability measure for the transition kernel π . Show that the following properties are all equivalent:

- i. \mathbb{P}_{μ} is ergodic.
- ii. $\frac{1}{n}\sum_{i=1}^{n-1}F\circ\Theta^{i}\to\mathbb{E}_{\mu}[F],\;\mathbb{P}_{\mu}\text{-almost surely for any }F\colon\Omega\to\mathbb{R}\text{ such that }\mathbb{E}_{\mu}|F|<\infty.$
- iii. $\frac{1}{n}\sum_{i=1}^{n-1} f(X_i) \to \mu(f)$, \mathbb{P}_{μ} -almost surely for any $f: E \to \mathbb{R}$ such that $\mu(|f|) < \infty$.
- iv. For any $B \in \mathcal{E}$, $\frac{1}{n} \sum_{i=1}^{n-1} \pi^n(x, B) \to \mu(B)$, for μ -a.e. $x \in \mathcal{E}$.
- v. For any $B \in \mathcal{E}$ such that $\mu(B) > 0$, $\mathbb{P}_x(T_B < \infty) > 0$ for μ -a.e. $x \in \mathcal{E}$.
- vi. Any set $B \in \mathcal{E}$ satisfying $\pi \mathbb{I}_B = \mathbb{I}_B \mu$ -almost surely has measure $\mu(B) \in \{0, 1\}$.

Conclude that (i)-(vi) are satisfied if π is μ -irreducible.

Exercise 4. (ERGODICITY AND IRREDUCIBILITY FOR MARKOV PROCESSES) [5 pts] Consider a canonical Markov process $((X_t)_{t\geq 0}, \mathbb{P}_x)$ with state space (E, \mathcal{E}) and transition semigroup $(p_t)_{t\geq 0}$.

- a) Show that for $\mu \in \mathcal{P}(E)$, the following three conditions are equivalent:
 - i. $\mathbb{P}_{\mu} \circ \theta_t^{-1} = \mathbb{P}_{\mu}$ for any $t \ge 0$;
 - ii. $((X_t)_{t\geqslant 0}, \mathbb{P}_x)$ is a stationary process;
 - iii. μ is invariant with respect to p_t for any $t \ge 0$.
- b) Show that the following three conditions are equivalent:
 - i. \mathbb{P}_{μ} is ergodic;
 - ii. Every function $h \in \mathcal{L}^2(\mu)$ such that $p_t h = h$ μ -a.s. $\forall t \ge 0$ is almost surely constant.
 - iii. Every set $B \in E$ such that $p_t \mathbb{I}_B = \mathbb{I}_B \mu$ -a.s. for any $t \ge 0$ satisfies $\mu(B) \in \{0, 1\}$.
- c) Show that for any shift-invariant event A, there exists $B \in E$ with $p_t \mathbb{I}_B = \mathbb{I}_B \mu$ -a.s. for any $t \ge 0$ such that $\mathbb{I}_A = \mathbb{I}_{\{X_0 \in B\}} \mathbb{P}_{\mu}$ -a.s.

Exercise 5. (ERGODICITY AND DECAY OF CORRELATIONS). [5 pts] We consider a stationary stochastic process $(X_t)_t \in [0, \infty)$ defined on the canonical probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- a) Prove that the following properties are equivalent:
 - i. \mathbb{P} is ergodic;
 - ii. $\operatorname{Var}\left[\frac{1}{t}\int_0^t F \circ \theta_s \mathrm{d}s\right] \to 0 \text{ as } t \uparrow \infty \text{ for all } F \in \mathcal{L}^2(\mathbb{P});$
 - iii. $\operatorname{Cov}\left[\frac{1}{t}\int_0^t F \circ \theta_s \mathrm{d}s, G\right] \to 0 \text{ as } t \uparrow \infty \text{ for all } F, G \in \mathcal{L}^2(\mathbb{P});$
 - iv. $\operatorname{Cov}\left[\frac{1}{t}\int_0^t F \circ \theta_s \mathrm{d}s, F\right] \to 0 \text{ as } t \uparrow \infty \text{ for all } F \in \mathcal{L}^2(\mathbb{P});$
- b) The process (X_t) is said to be mixing iff $\lim_{t\to\infty} \text{Cov}(F \circ \theta_t, G) = 0$ for all $F, G \in \mathcal{L}^2(\mathbb{P})$. Prove that:
 - i. If $(X_t)_{t\geq 0}$ is mixing then it is ergodic.
 - ii. If the tail field $A = \bigcap_{t \geq 0} \sigma(X_s : s \geq t)$ is trivial then $(X_t)_{t \geq 0}$ is mixing (and hence ergodic).