

Markov Processes – Problem Sheet 8.

Tutorials by Nikolay Barashkov <s6nibara@uni-bonn.de>, Robert Crowell <crowellr@googlemail.com>. Solutions will be collected Tuesday December 19th during the lecture. At most in groups of 2.

Exercise 1. (ASYMPTOTIC VARIANCES OF ERGODIC AVERAGES) [5pts] We consider a stationary Markov chain (X_n, \mathbb{P}_{μ}) with state space (E, \mathcal{E}) , transition kernel π , and initial distribution μ .

a) For $f \in L^2(\mu)$ let $f_0 = f - \mu(f)$ and let $A_t f = t^{-1} \sum_{k=0}^{n-1} f(X_k)$. Prove (without assuming the CLT) that if $G f_0 = \sum_{k=0}^{\infty} \pi^k f_0$ converges in $L^2(\mu)$ then

$$\lim_{t \to \infty} t \operatorname{Var}(A_t f) = 2(f_0, G f_0)_{L^2(\mu)} - (f_0, f_0)_{L^2(\mu)} = \operatorname{Var}_{\mu}(f) + \sum_{k=1}^{\infty} \operatorname{Cov}_{\mu}(f, \pi^k f).$$

b) Let $E = \{1, 2\}$ and $\pi(1, 1) = \pi(2, 2) = p$ and $\pi(2, 1) = \pi(1, 2) = 1 - p$ with $p \in (0, 1)$. Show that the unique stationary distribution μ is given by $\mu(1) = \mu(2) = 1/2$ for all values of p. Now consider $S_n = A_n - B_n$ where $A_n = \#\{k \le n: X_k = 1\}$ and $B_n = \#\{k \le n: X_k = 2\}$. Show that S_n/\sqrt{n} satisfies a CLT and compute the limiting variance $\sigma^2(p)$ as a function of p. How does this variance behaves as $p \to 0$? Can you explain it? What is the value of $\sigma^2(1/2)$? Could you have guessed it?

Exercise 2. (RANDOM WALKS ON \mathbb{Z}_+) [5pts] Let $\delta \in (0, 1)$. We consider a random walk on the nonnegative integers with transition probabilities

$$\pi(x,y) = \frac{1}{2} (\mathbb{I}_{x=y} + \mathbb{I}_{x=0,y=1}) + \frac{(1-\delta)}{4} \mathbb{I}_{y=x+1,x\geqslant 1} + \frac{(1+\delta)}{4} \mathbb{I}_{y=x-1,x\geqslant 1}$$

- a) Find the invariant probability measure μ explicitly.
- b) Let $f: \mathbb{Z}_+ \to \mathbb{R}$ be a function with compact support. Solve the Poisson equation $-\mathcal{L}g = f$ explicitly (e.g. using the Ansatz g = uh where h is a solution to $\mathcal{L}h = 0$). Show that for large x a solution g either grows exponentially, or it is a constant.
- c) Show that there is a solution g that is a constant for large x if and only if $\mu(f) = 0$. What can you say about the asymptotic variance and the central limit theorem for $\sum_{k=0}^{n-1} f(X_k)$ for such functions f?

Exercise 3. (COUPLINGS ON \mathbb{R}^d) [5pts] Let $W: \Omega \to \mathbb{R}^d$ be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mu_a = \text{Law}(a+W)$.

a) (Synchronous coupling) Let X = a + W and Y = b + W for $a, b \in \mathbb{R}^d$. Show that

$$W^2(\mu_a, \mu_b) = |a - b| = [\mathbb{E}(|X - Y|^2)]^{1/2},$$

i.e. that (X,Y) is an optimal coupling wrt. \mathcal{W}^2 .

b) (Reflection coupling) Assume that Law(W) = Law(-W). Let $\tilde{Y} = \tilde{W} + b$ where $\tilde{W} = W - 2(e \cdot W)e$ with e = (a - b) / |a - b|. Prove that (X, \tilde{Y}) is a coupling of μ_a and μ_b and if $|W| \leq |a - b|/2$ a.s. then

$$\mathbb{E}(f(|X - \tilde{Y}|)) \leqslant f(|a - b|) = \mathbb{E}[f(|X - Y|)]$$

for any concave, increasing function $f: \mathbb{R}_+ \to \mathbb{R}_+$ such that f(0) = 0.

Exercise 4. (STRUCTURE OF INVARIANT MEASURES) [5pts] Let π be a probability kernel on (E, \mathcal{E}) and let $\mathcal{S}(\pi) = \{ \mu \in \mathcal{P}(E) : \mu \pi = \mu \}$.

- a) Show that $S(\pi)$ is convex.
- b) Prove that $\mu \in \mathcal{S}(\pi)$ is extremal if and only if every set $B \in \mathcal{E}$ such that $\pi \mathbb{I}_B = \mathbb{I}_B \mu$ -a.e. satisfies $\mu(B) \in \{0,1\}$.
- c) Show that every $\mu \in \mathcal{S}(\pi)$ is a convex combination of extremals (Hint: you can use exercise 4c of Sheet 6).