

Markov Processes – Problem Sheet 9.

Tutorials by Nikolay Barashkov <s6nibara@uni-bonn.de>, Robert Crowell <crowellr@googlemail.com>. Solutions will be collected Tuesday January 9th during the lecture. At most in groups of 2.

Exercise 1. (Total variation distances) [5pts]

- a) Let $\nu = \bigotimes_{i=1}^{d} \nu_i$ and $\mu = \bigotimes_{i=1}^{d} \mu_i$ be two product probability measures on E^d . Show in at least two different ways that $\|\nu \mu\|_{\text{TV}} \leqslant \sum_{i=1}^{d} \|\nu_i \mu_i\|_{\text{TV}}$.
- b) Show that the total variation distance of the law of a Markov chain to its stationary distribution is a non-increasing function of time.
- c) Do similar statements as in a) and b) hold when the total variation distance is replaced by a general transportation metric \mathcal{W}^1 ?

Definition 1. Let $\varepsilon > 0$. The ε -mixing time of a Markov semigroup $(p_t)_t$ on E with invariant probability measure μ is defined as $t_{\text{mix}}(\varepsilon) := \inf\{t \ge 0 : \|p_t(x,\cdot) - \mu\|_{\text{TV}} \le \varepsilon, \forall x \in E\}$.

Exercise 2. (HARD CORE MODEL) [5pts] Consider a finite graph (V, E) with n vertices of maximal degree Δ . The corresponding hard core model with fugacity $\lambda > 0$ is the probability measure μ_{λ} on $\{0,1\}^V$ with mass function

$$\mu_{\lambda}(\eta) = \begin{cases} \frac{\lambda^{\sum_{x \in V} \eta(x)}}{Z(\lambda)}, & \text{if } \eta(x) \eta(y) = 0 \text{ for any } (x, y) \in E, \\ 0 & \text{otherwise} \end{cases}$$

where $Z(\lambda)$ is a normalization constant.

- a) Describe the transition rule for the Glauber dynamics with equilibrium μ_{λ} , and determine the transition kernel π .
- b) Prove that for $\lambda < (\Delta 1)^{-1}$ and $t \in \mathbb{N}$,

$$\mathcal{W}^1(\nu\pi^t,\mu)\leqslant \alpha(n,\Delta)^t\mathcal{W}^1(\nu,\mu)\leqslant \exp\biggl(-\frac{t}{n}\biggl(\frac{1-\lambda(\Delta-1)}{1+\lambda}\biggr)\biggr)\mathcal{W}^1(\nu,\mu),$$

where $\alpha(n, \Delta) = 1 - \frac{1}{n} \left(\frac{1 - \lambda(\Delta - 1)}{1 + \lambda} \right)$ and \mathcal{W}^1 is the Wasserstein metric based on the Hamming distance on $\{0, 1\}^V$.

c) Show that in this case, the ε -mixing time is of order $O(n \log n)$ for any $\varepsilon \in (0, 1)$.

Exercise 3. (CONDUCTANCE AND LOWER BOUNDS FOR MIXING TIMES) [5pts] Let π be a transition kernel on (E, \mathcal{E}) with stationary distribution μ . For sets $A, B \in \mathcal{E}$ with $\mu(A) > 0$, the equilibrium flow Q(A, B) from A to B is defined by

$$Q(A,B) = (\mu \otimes \pi)(A \times B) = \int_A \mu(\mathrm{d}x)\pi(x,B),$$

and the conductance of A is given by $\Phi(A) = \frac{Q(A, A^c)}{\mu(A)}$. The bottleneck ratio (isoperimetric constant) Φ_* is defined as $\Phi_* = \min_{A: \mu(A) \leqslant 1/2} \Phi(A)$. Let $\mu_A(B) = \mu(B|A)$ denote the conditioned measure on A.

a) Show that for any $A \in B$ with $\mu(A) > 0$,

$$\|\mu_A \pi - \mu_A\|_{TV} = (\mu_A \pi)(A^c) = \Phi(A).$$

[Hint: prove first that

i.
$$\mu_A \pi(B) - \mu_A(B) \leq 0$$
 for any measurable $B \subseteq A$, and

ii.
$$\mu_A \pi(B) - \mu_A(B) = \mu_A \pi(B) \geqslant 0$$
 for any measurable $B \subseteq A^c$.

b) Conclude that

$$\|\mu_A - \mu\|_{\text{TV}} \leq t \Phi(A) + \|\mu_A \pi^t - \mu\|_{\text{TV}}, \quad \text{for any } t \in \mathbb{Z}_+.$$

c) Hence prove the lower bound

$$t_{\text{mix}}\left(\frac{1}{4}\right) \geqslant \frac{1}{4\Phi_*}.$$

Exercise 4. (LAZY RANDOM WALK ON A BINARY TREE) [5pts]

Consider the lazy random walk with resting probability $\pi(x,x)=1/2$ on a binary tree of depth k. Let $m=2^{k+1}-1$ denote the number of vertices. Prove that:

- a) $\limsup_{m\to\infty} t_{\text{mix}}(1/4)/m < \infty$,
- b) $\lim_{m\to\infty} t_{\text{mix}}(1/4)/m > 0$.

[Hint: You may assume the conductance bound from the previous exercise!]