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1 What is quantum probability?

QP is a non-commutative generalisation of probability.

classical probability quantum probability

L2(Ω,F ,P) Hilbert space H

1∈L2(Ω,F ,P) distinguished vector u∈H, or a state ρ

random variable X self-adjoint operator A
law of X f 7→Tr[ρf(A)],

expectation of X Tr[ρA]

We start with a finite probability space |Ω|<+∞.

A real random variable X can be seen as a self-adjoint operator OX on H=L2(Ω,F ,P), diagonal
on the o.n.b. (eω = Iω/P(ω))ω∈Ω and such that OXeω = X(ω)eω. The average of X is given by
E[X] = 〈1, OX1〉 where 1∈H is the function 1(ω)= 1 for all ω ∈Ω.

On the other hand given a n–dimensional Hilbert space H with a distinguished vector u∈H and a
self-ajoint operator A there exists an ONB family of eigenvectors (ϕi)i=1,...,n for A corresponding

to eigenvalues (λi)i. Then letting Ω= {1, ..., n}, µ({i})= 〈ϕi, u〉, X(i) =λi we have

A=
∑

i

λi|ϕi〉〈ϕi|, E[X] =
∑

i

λiµ({i})=
∑

i

λi〈u|ϕi〉〈ϕi|u〉= 〈u,Au〉

Given two vectors v,w∈H the notation |v〉〈w | stands for the operator such that |v〉〈w |ϕ= 〈w, ϕ〉v
for any ϕ∈H. More generally, for any bounded function f

E[f(X)] =
∑

i

f(λi)µ({i})= 〈u, f(A)u〉

where the operator f(A) is defined by f(A)ϕi= f(λi)ϕi for all i=1, ..., n.

General states corresponds to convex combination of the previous construction:

∑

i

pi〈ui, f(A)ui〉=Tr[ρf(A)] with ρ=
∑

i

pi|ui〉〈ui|
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where ‖ui‖=1 and
∑

i
pi=1. The operator ρ is positive definite 〈u, ρu〉> 0 therefore self–adjoint

and also of trace 1. We call all such operators states or density matrices and denote their set
as S(H) = {ρ ∈ L(H): ρ > 0, Tr(ρ) = 1}. Pure states ρu = |u〉〈u| are extremals in the convext
set of all states. Note that pure states are defined modulo a conjugation with a phase factor
ρeiϕu= |eiϕu〉〈eiϕu|= |u〉〈u|= ρu. For pure states we have Tr(ρuA)= 〈u,Au〉.

The expectation of a self-adjoint element on the state ρ is defined as the map A 7→ Tr(ρA). The
law µ of the random variable A is given by the measure µ on σ(A) (the spectrum of A) such that

µ(f)=Tr[ρf(A)],

for all bounded measurable functions on σ(A). In the discrete setting σ(A)= {λi}i.

If A,B commute then their joint law is the measure µ on σ(A)×σ(B) such that µ(f)=Tr[ρf(A,

B)] for all (bounded, measurable) f : σ(A) × σ(B) → R. In this case f(A, B) is defined by
f(A,B)ϕi= f(λi(A), λi(B))ϕi where (ϕi)i is a o.n.b. of H made of joint eigenvectors of A and B

and where λi(A), λi(B) are the corresponding eigenvalues.

The notion of law for multiple of random variables is well defined only if the random variables
are commuting. The basic problem is that there is no canonical way to define f(A, B) for non-
commuting operators. For example, if f(x, y) = x2y2 then we have also f(x, y) = x y x y but in
general

A2B2=/ ABAB.

A quantum probability space is an Hilbert space H together with a state ρ ∈ S(H). Random
variables are the self–adjoint elements of L(H).

The aim of QP is to compute and study the laws of given collections of self–adjoint operators.

Later on more details on axiomatization. This is the von Neumann model of QP.

2 Non-commutative Bernoulli space

The simplest example is given by an Hilbert space of dimension 2:

H= spanC(|0〉, |1〉)

or |+1〉, |−1〉, or |fundamental〉, |excited〉, or |↑〉, |↓〉, etc..

Any state has the form

ρ=

(

α r

r̄ 1−α

)

, α∈ [0, 1], r ∈C, α(1−α)− |r |2> 0.

When α(1−α)= |r |2 this is an orthogonal projector on a complex line giving a pure state.

Consider the basis on the space of 2× 2 matrices (Pauli matrices)

I=

(

1 0
0 1

)

, σx=

(

0 1
1 0

)

, σy=

(

0 −i

i 0

)

, σz=

(

1 0
0 −1

)

.

Another common notation for σx, σy, σz is σ1, σ2, σ3. This is an orthonormal basis of M2(C) with

the scalar product 〈A,B 〉=
1

2
Tr(A∗B). They verify the commutation relations

[σx, σy] = 2iσz, [σz, σx] = 2iσy, [σy, σz] = 2iσx,
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anticommutation relations

{σa, σb}=2δa,b, a, b∈ {x, y, z},

and they are involutions

σx
2=σy

2=σz
2=−iσxσyσz= I.

A generic self–adjoint element is given by

A=xσx+ yσy+ zσz+ tI

for which

Tr[A] = 2t, Tr[A2] = 2(x2+ y2+ z2+ t2),

this implies that the spectrum of A is σ(A) = {t± x2+ y2+ z2
√

}. Therefore the matrix

σθ,ϕ=

(

cos θ e−iϕsin θ

eiϕsin θ −cos θ

)

represents a generic Bernoulli random variable with spectrum {−1,+1}. On the other hand all the
pure states can be written as

ρθ,ϕ=
1

2
(I+ σθ,ϕ)= |θ, ϕ〉〈θ, ϕ|

where |θ, ϕ〉 is the eigenvector of σθ,ϕ with eigenvalue +1, namely σθ,ϕ|θ, ϕ〉= |θ, ϕ〉.

3 The Stern–Gerlach experiment

Otto Stern and Walther Gerlach conducted in Frankfurt in 1922 the experience described in
Figure 1 (left). A beam of atoms experience an intense magnetic field and as a consequence is
deflected. Upon detection by means of a screen the arrival positions of the atoms reveals a quantized
patterns, in contrast with classical theory of the magnetic moment of atoms which would require
a continuous distribution of arrival positions due to the uniform distributions of the magnetic
moment within the atom’s population escaping from the oven. Figure 1 (right) shows the actual
images obtained in the original experiment.

Figure 1. Left: Stern–Gerlach experiment: silver atoms travel through an inhomogeneous magnetic field and are
deflected up or down depending on their spin. 1: furnace. 2: beam of silver atoms. 3: inhomogeneous magnetic
field. 4: expected result. 5: what was actually observed. [from Wikipedia https://en.wikipedia.org/wiki/Stern–Ger-
lach_experiment]. Right: the experimental result of the Stern-Gerlach experiment. The beam has split into two
components. From [Gerlach, Walther, and Otto Stern. “Der experimentelle Nachweis der Richtungsquantelung im
Magnetfeld.” Zeitschrift für Physik 9, no. 1 (December 1, 1922): 349–52. https://doi.org/10.1007/BF01326983.]
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The Stern–Gerlach experiment is a proof of the existence of a quantized magnetic moment for
the electron. Indeed the silver atoms have atomic number 47. In its fundamental state, 46 of
these electrons do not contributed to the magnetic moment since they come in pairs of opposite
intrinstic magnetic moment (spin) and in a spatially symmetric state which do not generate any
angular momentum. Only the last electron, whose spatial distributions is also symmetric, has
an uncompensated intrinsic magnetic moment which consitute the only relevant contribution to
the total magnetic moment of the atom. This magnetic moment interacts with the non–uniform
magnetic field deflecting the trajectory of the atom. The presence of two well separated tracks
means that this spin comes only in two varieties, oriented in the direction of the magnetic field or
in the opposite direction.

So the spin of the electron is a Bernoulli random variable. In order to explore other properties of
this random variable we imagine a sequence of Stern–Gerlach experiments performed in series.

Oven
ẑ

ẑ

+ +
−

In this first case we first measure the ẑ orientation, select those atoms which emerge from the +
path after the first instrument and then again the ẑ orientation and we obtain that all the atoms
emerge from the + path.

Oven
x̂

ẑ

+ +

−

In this second situation we measure a different, orthogonal direction in the second instrument
and we obtain that half of the atoms emerge from the + path and half from the − path. This is
expected due to the symmetry of the problem.

Oven
x̂

ẑ
ẑ+

+ +
−

In this third installment we select the atoms which emerge from the + path after the x̂ instrument
and perform another selection with a ẑ instrument. The result is that again half of the atoms
emerge from the + path and half from the − path. The interpretation is that the measurement of
x̂ has completely destroyed the previous measurement of ẑ.

We now introduce another apparatus which undo the effect of a Stern–Gerlach instrument, this
is not difficult to imagine, we just need to produce the opposite magnetic field to undo the effect
of the first and arrange appropriately the geometry to recombine the atom beam. We label this
instrument ž if it operates in the z direction.

Oven
x̂ x̌ ẑ

ẑ

+ +
−

In this first case we use the new instrument to recombine the beams after a x̂ beam splitter. If we
have selected only atoms with spin in the ẑ =+1 direction right after the oven, then we will end
up with all the atoms in the + beam after the last ẑ instrument.

Oven
x̂ x̌ ẑ

ẑ

+ +
+
−

We now block the x̂=−1 beam and we observe that atoms exit the instrument with probability
1/2 in each of the two final beams.

4



This is quite surprising. Allowing more atoms to go through the experiment depletes one of the
exit beams! This property is not in agreement with a probabilistic description of the state of the
atoms. Removing a conditioning cannot renders impossible events which were possible under the
conditioning. This is a manifestation of quantum mechanical interference effects.

Let us use the quantum Bernoulli space to compute the probability that an atom which has been
measured in the ẑ = +1 direction will be, subsequently, measured in the v̂ = +1 direction where
v̂ ∈R3 is a unit vector which has an angle θ wrt. ẑ. We can take σz as the r.v. which represents
the value of the first measurement and we denote by |±z〉 the corresponding eigenvector with
eigenvalue ±1. After the measurement the state of the system is the pure state |+z〉〈+z | since it
is the only that satisfies Tr(ρIσz=+1) = 1. The spin σ(v) in the direction v̂ has to be represented
by a self–adjoint operator with spectrum ±1, therefore

σ(v̂)= cxσx+ cyσy+ czσz,

with cx
2 + cy

2 + cz
2 = 1. We need to identify these coefficients. Using a difference reference frame

obtained via rotation in R3 does not affect the state of the atoms but random variables corre-
sponding to measurament in a given direction are transformed into other variables in a different
direction. In particular there should exists a unitary operator U which conjugates σx, σy, σz

with σ(f1), σ(f2), σ(f3) where (f1, f2, f3) is any other orthornormal basis of R3 with positive
orientation. We see that rotations R∈SO(3) have to act as unitary operators UR on H such that

UR
−1σ(v)UR=σ(Rv). As a consequence we observe that the bilinear form B(v̂ , ŵ)=

1

2
Tr[σ(v̂)σ(ŵ)]

is invariant under rotations and coincide with the standard scalar product of v̂ and ŵ. Therefore
we must have

σ(v̂)= vxσx+ vyσy+ vzσz

where v̂x, v̂y, v̂z are the components of v̂ ∈R3 in the basis (x̂, ŷ , ẑ). At this point we are able to
carry on our computation

Tr(ρIσ(v̂)=+1)=
1

2
Tr(ρ (I+σ(v̂))) =

1

2
(1+ 〈+z |σ(v̂)|+z〉)=

1

2
(1+ v̂z)

where we used the fact that Iσ(v̂)=+1 = (I+ σ(v̂))/2 (by functional calculus, or simply checking
that the two operators have the same eigenvalues) and 〈+z |σx,y |+z〉 = 0 by symmetry. So the
probability to observe an atom prepared in the σ(ẑ)=+1 state in the σ(v̂)=+1 state is

1

2
(1+ cos(θ))

where θ is the angle between ẑ and v̂.

We note that the Pauli matrices are generators for the unitary groups corresponding to rotations
around the x, y, z axis respectively. Indeed consider the unitary operator Uα= exp(iσzα/2) and let

σx(α) =Uα
−1σxUα, σy(α)=Uα

−1σxUα, σz(α)=Uα
−1σzUα=σz

for α∈R. We have (σx(0), σy(0), σz(0)) = (σx, σy, σz) and

d

dα
σx(α) =

i

2
Uα

−1(σxσz − σzσx)Uα=
i

2
Uα

−1[σx, σz]Uα=Uα
−1σyUα= σy(α)

d

dα
σy(α)=

i

2
Uα

−1(σyσz − σzσy)Uα=
i

2
Uα

−1[σy, σz]Uα=−Uα
−1σxUα=−σx(α)

therefore we must have

(σx(α), σy(α), σz(α)) = (cos(α)σx+ sin(α)σy,−sin(α)σx+ cos(α)σy, σz) =Rα(σx, σy, σz)
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where Rα∈ SO(3) is a rotation of α around ẑ. For all v ∈R3 we have

Uα
−1σ(v)Uα=Uα

−1(vxσx+ vyσy+ vzσz)Uα=(vx, vy, vz) ·Rα(σx, σy, σz)

=(Rα
−1(vx, vy, vz)) · (σx, σy, σz)= σ(Rα

−1v).
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