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1 More on the law of r.v. in a quantum probability space

B characteristic functions? Let z = x+ iy = rei' 2C and consider the skew�adjoint operator
J = i (x�x+ y�y). A direct computation gives J2=¡r2 and therefore

exp(J)=
X
n>0

Jn

n!
=
X
n>0

J2n

(2n)!
+
X
n>0

J2n+1

(2n+1)!
=
X
n>0

(¡1)nr2n
(2n)!

+ i(cos'�x+ sin'�y)
X
n>0

(¡1)nr2n+1
(2n+1)!

=cos(r)+ i(cos'�x+ sin'�y)sin(r) =

 
cos(r) ie¡i'sin(r)

iei'sin(r) cos(r)

!
:

And we can try to de�ne a characteristic function for the pair of random variables �x; �y by

'(x; y)=Tr[ � exp[i (x�x+ y�y)]]:

Taking for example �= je0ihe0j with e0= (1; 0) we get '(x; y) = cos((x2+ y2)1/2). This function
cannot be the caracteristic function of any measure on R2. Indeed '(t; 0) = '(0; t) = cos(jtj), so
both marginals of this measure would have been concentrated on the set f¡1; 1g which is only
possible if the measure itself is concentrated on f¡1; 1g2. Then it is easy to see that there are no
measure on this set which has the above function as characteristic function. This is a very basic
example of the fact that non-commuting observables do not have a joint law.

B Also observe that while �x and �y takes values �1 the random variable �x + �y takes values
� 2
p

! Clearly no classical interpretation of this is possible.

B Let H be an Hilbert space of dimension n and let u a �xed unit vector. Consider an operator
A which has spectrum f0; :::; n ¡ 1g. In the pure state u is has law �(k) = hujIA=kjui. Now let
(pk)k an arbitrary law on f0; :::; n¡ 1g and consider a vector v such that p(k)= hv jIA=kjvi which
can always be constructed. We can also construct a unitary operaror U such that Uu = v. Let
B=U¡1AU and observe that hujIB=kjui= hujU¡1IA=kU jui= hUujIA=kjUui= hv jIA=k jvi= p(k).
The random variable B has law p in the pure state u. In particular for any law on f0; :::; n¡ 1g
we can construct a random variable with this given law in the �xed quantum probability space
(H; u). This is clearly not possible in a �nite classical probability space.

B A deterministic quantum process. Deterministic time evolution is represented by a family
(Ut)t of unitary operators on H such that UtUs = Ut+s. Expectation values at time t are given
by Tr[�Ut

¡1XUt]. Random variables evolve in time as Xt = Ut
¡1XUt. Take the Bernoulli space,

Ut= exp(it�z/2) and Xt= exp(¡it�z/2)�xexp(it�z/2) in the state �= I/2. Then the covariance
between di�erent times is

Tr[�XtXs] = cos(t¡ s):

So (Xt)t is a (non-commutative) process of �1 valued variables with this covariance. Let us not that
for a classical zero mean process, to have this covariance would require that �t=(�eit+ ��e¡it)/2 for
all t where � = �+ i� is a centred complex random variable with E(�2)=E(�2)=1, E(��)=0. In
particular �t has to take all values between [¡j� j; j� j]. We see that in the quantum world discrete
values and continuous time evolution is possible at the same time.
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2 Heisenberg uncertainty principle

We let m�(A)=Tr[�A] the average of A and Var�(A)=m�((A¡m�(A))
2) the variance of A in the

state �.

Theorem 1. Given an Hilbert space H (not necessarily finite dimensional) and bounded
self�adjoint operators A;B it holds

Var�(A)Var�(B)>
1
4
jm�(i[A;B])j2:

Proof. By replacing A; B with A ¡ m�(A) and B ¡ m�(B) is enough to consider mean zero
operators. Then

m�(i[A;B])= iTr[�(AB ¡BA)] =¡2Im
X
i

hA�1/2 ei; B�1/2eii

and then

jm�(i[A;B])j26 4
�X

i

hA�1/2 ei; A�1/2eii
��X

i

hB�1/2 ei; B�1/2eii
�

64Var�(A)Var�(B):

�

In particular if the operators do not commute there is no state which give zero dispersion to both
at the same time. This fact encodes Heisenberg's uncertainty principle about the impossibility to
measure with arbitrary precisions observables which interfere with each other. Non�commutativity
is the mathematical tool which encodes this constraint.

3 Bell's inequalities

Consider four observables A0; B0; A1; B1 such that [Ai; Bj] = 0 for i; j=0; 1 and all of them takes
values �1. Let

R=A0B0+A0B1+A1B0¡A1B1

then

R2=4¡ [A0; A1][B0; B1]:

In the classical case [A0; A1] = [B0; B1] = 0 so we have that m�(R) 6 2. In the quantum case
k[A0; A1]k= k[B0; B1]k6 2 and we obtain Tsirelson's bound

m�(R)6 2 2
p

:

This bound is indeed tight and can be realised already on a tensor product of two Bernoulli spaces,
showing that there is no classical assignment of probabilities to the four r.v. which can realise this
particular correlation. In a di�erent form this was originally obtained by Bell. The bound has also
be saturated by an experiment carried over by Aspect et al.

The setup for the Bernoulli space is the following. Take the pure state

u=
1

2
p (j+xi 
 j¡xi ¡ j¡xi
 j+xi)
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and A0=�z
 I, A1=�x
 I, B0= I
 (�z+ �x)

2
p , B1= I
 (�z¡�x)

2
p . We have

m�(R)= 2 2
p

:

4 Coherent states on the Bernoulli space

B(creation and annihilation operators) Introduce the further matrices

b¡=

�
0 1
0 0

�
; b+=

�
0 0
1 0

�
; b�=

�
0 0
0 1

�

called respectively annihilation, creation and preservation (or number) operator. Then

I= b¡b++ b+b¡; �x= b
++ b¡; �y= i(b

+¡ b¡); �z= b
¡b+¡ b+b¡= I¡ 2b�:

note that (b�)�= b� and that b�= b+b¡ is self�adjoint. In particular we have canonical anticom-
mutation relations

fb+; b¡g= b¡b++ b+b¡= I;

and commutation relations

[b¡; b+] = b¡b+¡ b+b¡= I¡ 2b�:

We can construct also unitary operators. Let z=x+ iy= rei'2C and consider the skew�adjoint
operator

J = zb+¡ z�b¡=x (b+¡ b¡)+ iy (b++ b¡) =¡i (x�x+ y�y):

Now J2=(zb+¡ z�b¡)2=¡jz j2 (b+b¡+ b¡b+) =¡jz j2=¡r2.

so

W (z)= exp(zb+¡ z�b¡) = exp(J) =
X
n>0

Jn

n!
=
X
n>0

J2n

(2n)!
+
X
n>0

J2n+1

(2n+1)!

=
X
n>0

(¡1)nr2n
(2n)!

¡ i(cos'�x+ sin'�y)
X
n>0

(¡1)nr2n+1
(2n+1)!

=cos(r)¡ i(cos'�x+ sin'�y)sin(r) =

 
cos(r) ¡ie¡i'sin(r)

¡iei'sin(r) cos(r)

!
:

For every z 2C the family (W (tz))t2R is an unitary group. Discrete coherent vectors

 (z)=W (z)

�
1
0

�
=

 
cos(r)

¡ie¡i'sin(r)

!

gives a di�erent parametrization of unit vectors of H. Is some sort of overcomplete continuous
basis for the Hilbert space.
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5 More than one quantum Bernoulli space, independently

B Consider now a family of N Bernoulli variables by taking the N -th tensor power HN of the
Hilbert space H together with a product state �N= �
N where �2S(H). If A is a random variable
on H we let A(n)= �n(A) = I
 ��� 
A
 ��� 
 I where the nontrivial factor is in the n-th position.
For any A;B 2L(H), the random variables A(n) and B(k) commute if n=/ k and their joint law is
given by

TrHN(�Nf(A(n))g(B(k)))=TrH(�f(A))TrH(�g(B));

which is what we expect for independent random variables. This tensor product construction
encodes classical independence in the non�commutative context. The family (A(k))k=1;:::;N is a
classical random process of iid random variables.

B The Quantum Bernoulli walk. We introduce operators

Xn=
X
k=1

n

�x
(k)
; Yn=

X
k=1

n

�y
(k)
; Zn=

X
k=1

n

�z
(k)

for all n=1; :::; N and observe that it holds

[Xn; Yk] = 2iZn^k; n; k=1; :::; N ;

and cyclic permutations of this relation. On a product state �N each of the processes (Xn)n, (Yn)n,
(Zn)n are random walks with increments �1. On the other hand the process (Xn; Yn; Zn)n=1;:::;N
is a genuinely non�commutative object called the quantum Bernoulli walk .
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