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1 The Quantum Bernoulli walk and related processes

We continue in the setting of multiple independent Bernoulli spaces introduced last week.

B Quantum Bernoulli walk. We introduce operators

Xn=
X
k=1

n

�x
(k); Yn=

X
k=1

n

�y
(k); Zn=

X
k=1

n

�z
(k)

for all n=1; :::; N and observe that it holds

[Xn; Yk] = 2iZn^k; n; k=1; :::; N ;

and cyclic permutations of this relation. On a product state �N each of the processes (Xn)n, (Yn)n,
(Zn)n are random walks with increments �1. On the other hand the process (Xn; Yn; Zn)n=1;:::;N
is a genuinely non�commutative object called the quantum Bernoulli walk .

B Spectra. We have already seen that the Pauli matrices are related to rotations. This motivates
us to consider the operator Rn2 =Xn

2+Yn
2+Zn

2 and observe that if k>n we have

[Zk; Xn
2+Yn

2+Zn
2] =Xn[Zk; Xn] + [Zk; Xn]Xn+Yn[Zk; Yn] + [Zk; Yn]Yn

=2i(XnYn^k+Yn^kXn¡YnXn^k¡Xn^kYn) =0

and similarly [Xk; Xn
2+Yn

2+Zn
2] = [Yk; Xn

2+Yn
2+Zn

2] = 0.

Moreover we introduce collective operators

Bn
�=

X
k=1

n

(b�)(k)=

¡
Xn� iYn

�
2

; Bn
�=

X
k=1

n

(b�)(k)=
n¡Zn
2

;

which also commute with Xn
2+Yn

2+Zn
2. On the other hand we have

[Bn
¡; Bn

+] =
X
k=1

n

[(b¡)(k); (b+)(k)] =n¡ 2Bn�=Zn;

[Bn
+; Bn

�] =
X
k=1

n

[(b+)(k); (b+)(k)(b¡)(k)] =
X
k=1

n

(b+)(k)=Bn
+;

and [Bn
¡; Bn

�] = ¡Bn¡. These relations imply that if 'k is an eigenvector of Bn� with eigenvalue
k 2�(Bn�)= f0; :::; ng then

Bn
�(Bn

�'k)=Bn
�Bn

�'k�Bn�'k=(k� 1)Bn�'k
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so either Bn
�'k=0 or Bn

�'k is another eigenvector with eigenvalue k�1. Since Bn� commutes with
Rn we can chooses common eigenvectors. Note that at this point is not clear what is the spectrum
of Rn. However we can observe that

4Bn
+Bn

¡=(Xn¡ iYn)(Xn+ iYn)=Xn
2¡ iYnXn+ iXnYn+Yn

2=Rn
2 ¡Zn2¡ 2Zn:

Let 'r;a be a joint eigenvector of Rn;Zn such that Bn
¡'r;a=0. This always exists since the Hilbert

space is �nite dimensional and repeated application of Bn
¡ produces orthogonal eigenvectors of Zn;

Rn unless it gives 0. Then we must have

r2¡ a2¡ 2a=0:

On the other hand, from this vector we can repeatedly apply Bn
+ until we get zero and generate

a sequence of common eigenvectors of Rn and Zn which we denote by 'r;a¡2k= (Bn
+)k'r;a since

Zn= n¡ 2Bn� so from the equality 4Bn
¡Bn

+= 4Bn
+Bn

¡+ 4Zn=Rn
2 ¡Zn2+2Zn applied to 'r;a¡2k

we obtain also the relation

0= r2¡ (a¡ 2k)2+2(a¡ 2k)= r2¡ a2+4ka¡ 4k2+2a¡ 4k

which together imply

4a(k+1)=4k2+4k=4k(k+1):

Since k > 0 by assumption we must have k= a and r2= k2+2k= k(k+2) for some k=1; 2; ::: It
follows that the spectrum of Rn has to belong to the set fr: r2= k(k+2) for k 2f1; 2; :::gg.

In order to get nicer formulas, more in line with traditional physical notations, we can then
introduce a new observable Jn (which is a function of Rn) such that

Jn(Jn+1)=
Xn
2+Yn

2+Zn
2

4

in such a way that the spectrum of Jn is in the set N / 2. So the value of k above coincides
with 2j. Therefore if j 2 N / 2 is in the spectrum of Jn then there exists a set of 2j + 1
common eigenvectors of Jn and Mn=Zn/2 such that the operator Mn takes on them the values
f¡j ;¡j+1; :::;0; :::; j¡1; jg. Inversely, by the above construction, if there exists an eigenvector of
Mn with eigenvalue m then there must exists a full set of 2j+1 common eigenvectors (a ladder) of
Jn and Mn with Jn> jmj. We denote the vectors of this ladder with  j;m. We are going to choose
a convenient normalization so for the moment these vectors are de�ned by the relations

Bn
+ j;m=  j;m¡1:

To determine completely the structure of the ladder space we need to �x the action of the annihi-
lation operators. Observe that

Bn
+Bn

¡= Jn(Jn+1)¡Mn(Mn+1)= (Jn¡Mn)(Jn+Mn+1)

and

Bn
¡Bn

+=Bn
+Bn

¡+2Mn= Jn(Jn+1)¡Mn(Mn¡ 1)= (Jn+Mn)(Jn¡Mn+1)

so

Bn
¡ j;m=Bn

¡Bn
+ j;m+1=(j+m+1)(j ¡m) j;m+1:
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A convenient normalization which makes nicer formulas for Bn
� is to take vectors

�j;m=  j;m
Y

m02fm;m+1;:::;j¡1g
(j ¡m0+1)¡1

so

Bn
¡�j;m=

Bn
¡ j;mQ

m02fm;m+1;:::;j¡1g (j+m
0+1)

= (j ¡m)�j;m+1:

and

Bn
+�j;m=

Bn
+ j;mQ

m02fm;m+1;:::;j¡1g (j+m
0+1)

= (j+m)�j;m¡1:

Moreover

h�j;m¡1; �j;m¡1i=
hBn+�j;m; Bn+�j;mi

(j+m)2
=
h�j;m; Bn¡Bn+�j;mi

(j+m)2
=
(j ¡m+1)
(j+m)

h�j;m; �j;mi

and �xing h�j;¡j ; �j;¡ji=1 we have

h�j;m; �j;mi=
Y

m0=¡j+1

m
j+m0

j ¡m0+1
=

Y
k=1

m+j
k

2j+1¡ k =
(j+m)!(j ¡m)!

(2j)!

for all m=¡j+1; :::; j.

B In our Bernoulli setting there exists surely eigenvectors of Mn with eigenvalue m 2 f¡n / 2;
¡n/2+1; :::; n/2¡1; n/2g which therefore implies existence of a ladder with j=n/2 for Jn. The
dimension of the vector space generated by this ladder is 2j + 1 so it does not exhaust the full
dimension of the space HN which is 2N.

B Products of irreps. To understand how HN decomposes into ladder spaces we proceed by
induction. Consider a subspace Ejn of Hn generated by a ladder with Jn = j, this space if of
dimension 2j+1. The random variable Mn+1 on Ejn
H�Hn+1 can take largest value j+1/2 so
in Ejn
H there should be a ladder Ej+1/2

n+1 . The full spectrum of Mn+1 is f¡j¡ 1/2; :::; j+1/2g
and the multiplicity of each eigenvalue is given by the ways of decomposing it into the sum of an
element of f¡j /2; :::; j /2g and f¡1/2; 1/2g. From the consideration of this multiplicity we can
deduce that there are at most two laddes Ej+1/2

n+1 and Ej 0
n+1 in the decomposition of Ejn
H, namely

Ej
n
H=Ej 0

n+1�Ej+1/2
n+1 . In order to determine j 0 we consider the dimensions of these spaces:

2(2j+1)= [2(j+1/2)+1]+ [2j 0+1]

which implies that j 0= j ¡ 1/2. So we have found

Ej
n
H=Ej¡1/2

n+1 �Ej+1/2
n+1 :

B General case. This is a particular case of a general theorem about products of irreducible
representations of the relations [Xn; Yn]=2iZn (and cyclic permutations). The latter generate the
Lie algebra of the group SU(2). The irreducible representations are labeled by j=0;1/2;1;3/2; :::
and the general addition theorem says that the product of an irreducible representation labeled by
j1 and another with j2 can be decomposed in a direct sum of irreducible representations indexed
by each j= jj1¡ j2j; :::; j1+ j2 taken with multiplicity one. This is related to the relation

(2j1+1)(2j2+1)=
X

j 0=jj1¡j2j

j1+j2

(2j 0+1):
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B A commutative process of spins. We consider now the random variables Sn = 2Jn + 1
which are associated to the dimension of the irreducible representations we constructed above. By
de�nition Sn commutes with Xn; Yn; Zn (because Rn does) and commutes also with Xk; Yk; Zk for
k>n (why?). So it commutes with Sk for k>n. In particular the process (Sn)n=1;:::;N is a classical
stochastic process which we call the total spin process. Note that Sn commutes with Zn but not
with Zk for k <n.

A common eigenvector  s for (Sn)n=1;:::;N = (2jn + 1)n=1;:::;N must belong to a space of the
form Ejn

n 
HN¡n for all n= 1; :::; N . In particular it belongs to a ladder space EjN
N and so it is

completely determined as soon as we know the value of MN on it. Note thatMN commutes with all
(Sn)n=1;:::;N so can be determined together with the path of this particular process. We conclude
that the projector �s on (Sn)n=1;:::;N = (sn)n=1;:::;N has dimension at least sN. We want now to
argue that the dimension is exactly sN, namely that there cannot be two ladders for JN with all
the same values of J1; :::; JN¡1. Indeed for the product rule of representations we already know
that we have the relation

Ejk
k 
HN¡k=(Ejk+1/2

k+1 
HN¡k¡1)� (Ejk¡1/2
k+1 
HN¡k¡1)

given ladder Ejk
k 
 HN¡k at step k splits into exactly two other ladders with di�erent values of

Jk+1. Since at the initial time (k=1) there is only one space of the form Ejk
k 
HN¡k it follows by

induction that for each k = 1; :::; N there is only one space of the form Ejk
k 
HN¡k in which the

operators J1; :::; Jk¡1 takes the �xed values j1; :::; jk¡1. We conclude that there is only one allowed
ladder EjN

N in which all J1; :::; JN take values j1; :::; jN and that the dimension of the spectral
projector �s is sN.

As a consequence, if �N = I/2N is the tracial state we have

P(Sn= sn:n=1; :::; N)=TrHN[�N�s] =
sN
2N
:

That is we have determined the complete law of this commutative process. It is now easy to �nd
out that this is a Markov process for which S1=2 and

P(Sk+1= sk� 1jSk= sk) =
sk� 1
2sk

:

This is a discrete analog of the 3�dimensional Bessel process.
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