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1 A central limit theorem of DeMoivre–Laplace type

⊲ Gauss and Poisson. We observe now that for all θ ∈R the random variable

eiθb++ e−iθb−,

has a symmetric law on {±1} in the state |e0〉〈e0|. By the classical CLT the random variable

GN =
eiθBN

+ + e−iθBN
−

N
√ ,

in the product state ρN =(|e0〉〈e0|)⊗N converges towards a centred Gaussian random variable.

Similarly, the random variable b+b− has law δ0 and therefore

ZN =BN
◦

(without any normalization) converges to the constant 0.

Finally, the random variable

(

1+
|z |2
N

)−1
[(

1− |z |2
N

)

b+b−+
z

N
√ b++

z̄

N
√ b−+

|z |2
N

I

]

=

(

1+
|z |2
N

)−1







|z |2
N

z̄

N
√

z

N
√ 1







has spectrum {0, 1} with respective probabilities
(

1 +
|z |2
N

)−1
and

|z |2
N

(

1 +
|z |2
N

)−1
on the pure

state |e0〉〈e0|. As a consequence, on the product state ρN =(|e0〉〈e0|)⊗N, the random variable

PN =

(

1+
|z |2
N

)−1
[(

1− |z |2
N

)

BN
◦ +

z

N
√ BN

+ +
z̄

N
√ BN

−+ |z |2I
]

=

(

1+
|z |2
N

)−1
[(

1− |z |2
N

)

ZN +GN
z + |z |2I

]

where

GN
z =

z

N
√ BN

++
z̄

N
√ BN

−,

has a Binomial law with parameters
(

N,
|z |2
N

(

1 +
|z |2
N

)−1
)

which converges to a Poisson random

variable with parameter |z |2 asN→∞. Note that PN is the linear combination of a random variable
with constant law

(

1+
|z |2
N

)−1
[(

1− |z |2
N

)

ZN + |z |2I
]
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and of a random variable GN
z which converges to a Gaussian.

⊲ A first computation. From these two observation become interesting to study the convergence

of the triple of non-commutative (non-self-adjoint) operators
(

BN
◦ , BN

+/ N
√

,BN
−/ N

√ )

as N→∞
in the state (|e0〉〈e0|)⊗N . Since we lack of a proper notion of law for such a triplet we will restrict
(in a first moment) to investigate the limit of moments of these operators and look at averages of
the form

〈

ϕ0, P
(

BN
◦ , BN

+/ N
√

, BN
−/ N

√ )

ϕ0

〉

(1)

where P is a generic non-commutative polynomial in three variables and ϕ0= e0
⊗N. Now observe

that ZNϕ0=Nϕ0 so starting from ϕ0 we generate a ladder with j=N /2 since no larger values of

ZN are possible in HN. We will label the vectors of this ladder with (ϕn)n=0,...,N such that

BN
◦ϕn=nϕn, MNϕn=

ZN

2
ϕn=

N − 2BN
◦

2
ϕn=

(

N

2
−n

)

ϕn.

Therefore we must have

BN
+ϕn=αnϕn+1, BN

−ϕn= βnϕn−1,

and we need to determine the coefficients αn, βn. We need to have

n(N −n+1)ϕn=(N /2−Mn)(N /2+Mn+1)ϕn=BN
+BN

−ϕn=αn−1βnϕn

so we can take αn= (n+1)(N −n)
√

and βn= n(N −n+1)
√

. With this choice we have

〈ϕn, ϕn〉= 1

αn−1
2

〈BN
+ϕn−1,BN

+ϕn−1〉= 1

αn−1
2

〈ϕn−1,BN
−BN

+ϕn−1〉= 〈ϕn−1, ϕn−1〉= ···= 〈ϕ0, ϕ0〉=1

since 〈ϕ0, ϕ0〉=1. Now

BN
◦ϕn=nϕn,

BN
+

N
√ ϕn= (n+1)(1−n/N)

√

ϕn+1,
BN

−

N
√ ϕn= n(1− (n− 1)/N)

√

ϕn−1.

If P is a polynomial of degree d only vectors ϕk with k 6 d are involved in the expression (1). It
is then easy to deduce that

lim
N

〈

ϕ0, P
(

BN
◦ , BN

+/ N
√

, BN
−/ N

√ )

ϕ0

〉

→〈ψ0, P (a
◦, a+, a−)ψ0〉

where (ψn)n>0 is a family of ortogonal vectors of an Hilbert space F (apriori unrelated to HN)

and (a◦, a+, a−) are operators on F defined by

a◦ψn=nψn, a+ψn= (n+1)
√

ψn+1, a−ψn= n
√

ψn−1,

Note that if we assume that 〈ψ0, ψ0〉=1 we have the normalization condition

〈ψn, ψn〉= 〈a+ψn−1, a
+ψn−1〉

n
=

〈en−1, ψ
−ψ+en−1〉
n

= 〈ψn−1, ψn−1〉= 〈ψ0, ψ0〉=1

and the relations

a+a−ψn=nψn, a−a+ψn=(n+1)ψn,
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so in particular

[a+, a−]ψn=(a+a−− a−a+)ψn= ψn

for all n> 0.

⊲ By the above considerations we already know that the operator

G∞= eiθa++ e−iθa−,

should have a Gaussian law. The fact that it is self-adjoint is now nontrivial since this operator is
not bounded. Similarly, the operator

Z∞= a◦+ |z |2I

has law δ0 on |ϕ0〉〈ϕ0| and

P∞= a◦+ za++ z̄ a−+ |z |2I,

should have a Poisson law of parameter |z |2, but again this would require justification since these
operator is also not bounded.

⊲ Note also that in the non-commutative world a Poisson random variable can be obtained by
summing a Gaussian G∞ with a random variable Z∞ with a constant law. Of course the point is
that G∞ does not commute with Z∞.

2 Quasi–characteristic functions and the quantum Gaussian

⊲ In order to explore more in detail the above convergence and its generalisation into full–fledged
non-commutative central limit theorem we investigate the general problem of convergence of
quasi–characteristic functions of arbitrary non–commuting operators. For simplicity we continue
to stick to a finite dimensional context, which however we will be force to leave soon, since as
we seen above the definition of the Gaussian requires unbounded operators (because the sup-
port of the Gaussian law is all R) and therefore an infinite dimensional Hilbert space.

⊲ In this section we consider an arbitrary finite dimensional quantum probability space (H, ρ)
where H is a finite dimensional Hilbert space with a state ρ and a family of self–adjoint operators
(Aj)j⊆L(H). We construct N independent copies of this quantum probability space via tensoriza-
tion and operators Aj

(k)
operating on the k-th copy. Finally for any Aj we consider the operator

σN(Aj) defined by

σN(A)=
1

N
√

∑

k=1

n

[A(k)− ρ(A)].

Theorem 1. For all α1, ..., αn∈C we have

lim
N→∞

ρN

(

∏

k=1

n

eiαkσN(Ak)

)

= exp

(

−1

2

∑

16j,k6n

Q(Aj , Ak)αjαk − i
∑

16j<k6n

κ(Aj , Ak)αjαk

)

=Φ(α)

where Q(A,B)=Re (ρ(AB)− ρ(A)ρ(B)) and κ(A,B)= Im ρ(AB)=−iρ([A,B])/2.

Proof. We can assume that ρ(Aj) = 0 for all j. Now note that

ρN

(

∏

k=1

n

eiαkσN(Ak)

)

=

[

ρ

(

∏

k=1

n

eiN
−1/2αkAk

)]

N
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and using the Taylor expansion

eiN
−1/2αkAk=1+ iN−1/2αkAk+

(iN−1/2αkAk)2

2
+

(iN−1/2αkAk)3

3!

∫

0

1

eiN
−1/2αkτkAkλ(dτk)

we have

ρ

(

∏

k=1

n

eiN
−1/2αkAk

)

=1−
∑

k

ρ[(αkAk)2]

2N
− 1

N

∑

k<j

ρ[αkAkαjAj]+O

(

supj ‖Ajαj‖3eN
−1/2|αj |‖Aj‖

N3/2

)

therefore, pointwise in α and uniformly in compacts

[

ρ

(

∏

k=1

n

eiN
−1/2αkAk

)]

N

→ exp



−
∑

k

ρ[(αkAk)2]

2
−
∑

k<j

ρ[αkAkαjAj]



.

Now it suffices to note that

−1

2

∑

16j,k6n

Q(Aj , Ak)αjαk− i
∑

16j<k6n

κ(Aj , Ak)αjαk

=−1

2

∑

16j,k6n

Re ρ(AjAk)αjαk− i
∑

16j<k6n

Im ρ(AjAk)αjαk

=−1

2

∑

16j6n

ρ(Aj
2)αj

2−
∑

16j<k6n

ρ(AjAk)αjαk

proving the claim. �

⊲ This theorem suggests that the function Φ(α) should be the quasi-characteristic function of
a quantum probability space (F , ω) endowed with a family of non-commuting (why?) operators
ϕ(Aj) labeled by the Aj such that, on the state ω we have

ω

(

∏

k=1

n

eiαkϕ(Ak)

)

= exp

(

−1

2

∑

16j,k6n

Q(Aj , Ak)αjαk− i
∑

16j<k6n

κ(Aj , Ak)αjαk

)

.

In classical probability the existence of such a probabability, with prescribed characteristic func-
tion, would be automatic given the (uniform) convergence of the characteristic functions itself. Here
it is not so simple. But the information we possess will be enough to show explicitly the existence
of such a quantum probability space which is labeled by the functions Q, κ.

⊲ If we recall the considerations of the previous section and apply the last theorem to the operators
σx, σy, σz on the quantum Bernoulli space on the pure state e0 we have that

Q(σa, σb) =Re 〈e0|σaσb|e0〉= δa,b, κ(σx, σy)=
1

2i
〈e0|[σx, σy]|e0〉=1,

so in this case for example

ω(eiαxϕ(σx)eiαyϕ(σy))= exp

(

−1

2
(αx

2 +αy
2)− iαxαy

)

.
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