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Recall the theorem we proved last week:

Theorem 1. For all �1; :::; �n2C we have

lim
N!1
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!
=�A(�)

with

�A(�) = exp
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�(Aj ; Ak)�j�k

!

where Q(A;B)=Re (�(AB)¡ �(A)�(B)) and �(A;B)= Im �(AB)=¡i�([A;B])/2.

B Theorem 1 suggests that the function �A(�) should be the quasi-characteristic function of a
quantum probability space (F ; !) endowed with a family of non-commuting (why?) operators
'(Aj) labeled by the Aj such that, on the state ! we have
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In classical probability the existence of such a probability, with prescribed characteristic function,
would be automatic given the (uniform) convergence of the characteristic functions itself. Here it
is not so simple. But the information we possess will be enough to show explicitly the existence of
such a quantum probability space which is labeled by the functions Q; �.

B If we recall the considerations of the previous section and apply the last theorem to the operators
�x; �y; �z on the quantum Bernoulli space on the pure state e0 we have that

Q(�a; �b)=Re he0j�a�bje0i= �a;b; �(�x; �y) =
1
2i
he0j[�x; �y]je0i=1;

so in this case for example

!(ei�x'(�x)ei�y'(�y)) = exp
�
¡1
2
(�x

2+�y
2)¡ i�x�y

�
:

B If �=0 this corresponds to the caracteristic function of a family of Gaussian variables.

B On the other hand if � =/ 0 we need necessarily have Q =/ 0, indeed the Hermitian form
L(A;B) = �((A¡ �(A))(B ¡ �(B))) satisfy the Cauchy�Schwartz inequality

�(A;B)26 jL(A�; B)j26L(A�; A)L(B�; B)=Q(A;A)Q(B;B)

which is a restatement of Heisenberg's uncertainty principle.
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1 A quantum Gaussian white noise

We give here an spatial extension of Theorem 1. We imagine that copies of the Hilbert space H
are indexed by elements of a �nite box �L;N = [¡LN ;LN ]d�Zd in d dimensions. Here L;N 2N
are two integers. With this additional structure we can consider averaging operators indexed by
smooth compactly supported functions '2S(Rd) supported on [¡L;L]d�Rd and let

�N(A; ')=
X

k2�L;N

'(k/N)A(k)

in H�L;N. Then, essentially using the same arguments as in the proof of Theorem 1, we can verify
that

Theorem 2. For all �1; :::; �n2C and '1; :::; 'k2S(Rd) with compact support we have

lim
L!1
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where Q(A;B)=Re (�(AB)¡ �(A)�(B)), �(A;B)= Im �(AB) =¡i�([A;B])/2 and

hh'j ; 'kii=
Z
Rd

'j(x)'k(x)dx:

B Theorem 2 suggests that the function �A(') should be the quasi-characteristic function of a
quantum probability space (F ; !) endowed with a family of non-commuting (why?) operators
 (Aj)(') labeled by the Aj and ' such that, on the state ! we have

!

 Y
k=1

n

ei�k (Ak)(')

!
=�A(�'):

In classical probability the existence of such a probabability, with prescribed characteristic func-
tion, would be automatic given the (uniform) convergence of the characteristic functions itself. Here
it is not so simple. But the information we possess will be enough to show explicitly the existence
of such a quantum probability space which is labeled by the functions Q; �.

B Note that when �=0 the function �A(�') is the characteristic function of a �nite dimensional
projection of a vector valued white noise � over Rd, that is, a vector valued, centered Gaussian
process � indexed by '2S(Rd) with covariance

E[�i(')�j( )] =Q(Ai; Aj)hh';  ii:

2 Existence of the quantum Gaussian

BHere we want to explicitly construct the space (F ; !). Consider the polynomial algebra P
generated by (U(A))A2A wheer A is the vector space of (bounded) selfadjoint operators on H and
endow it with the inner product

*Y
j

U(Aj
0);
Y
k

U(Ak)
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extended by linearity.

By Cauchy�Schwartz inequality the elements a 2 P such that ha; ai = 0 form a vector subspace
I �P . As vector spaces the quotient space P /I is an inner product space which can be completed
into an Hilbert space F .

Now if b 2 P and a 2 I we have ba =
P
r crbra where br are monomials of the form

Q
kU(Ak).

Therefore if we denote by br;N the �nite N representative of br and aN that of a we have

kbr ak2= lim
N
�N[aN

� br;N
� br;NaN]6 lim

N
kbr;Nk2 �N[aN� aN]6 lim

N
�N[aN

� aN] = kak2

where we used that kbr;Nk= 1 which implies the inequality I ¡ br;N� br;N > 0 and which in turns
implies that aN� (I¡ br;N� br;N)aN > 0. We conclude that I is a left ideal of P .

Now U(Ak) acts on this Hilbert space naturally as left multiplication

U(Ak)

0@X
r

cr

"Y
j

U(Ar;j)

#
+I

1A=X
r

cr

"
U(Ak)

Y
j

U(Ar;j)

#
+ I ;

and we have for all b 2 P , kU(Ak)bk2= limN �
N[�N

� (ei�N(Ak))�ei�N(Ak)�N], where �N is the �nite
N approximation of b. Therefore since ei�N(Ak) is unitary (ei�N(Ak))�ei�N(Ak)=1 and kU(Ak)bk2=
kbk2, and showing that U(Ak) is a bounded operator on P /I which can be extended uniquely
by continuity to F . One sees also that U(A)� = U(¡A) = U(A)¡1 so U(A) is unitary and
U(�A)U(�A) = U((a + �)A) for all A 2 A and �; � 2 R. Moreover if we let u = U(0) we
see that all elements of P can be expressed as Hu where H is a bounded operator on F belonging
to the algebra generated by the (U(A))A2A and �nally if we consider the state != juihuj we have

!
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as we where looking for.

B The construction of an Hilbert space given an algebra and a state on it that we sketched here
in our particular case can be generalised in the context of C� algebras and take the name of
Gelfand�Naimark�Segal construction.

B Going back to our quantum Gaussian space (F ; !) we see that

hU(A+B); U(A)U(B)i= hu; U(¡(A+B))U(A)U(B)ui= exp(¡i�(A;B))

from which we deduce that

U(A+B)= exp(i�(A;B))U(A)U(B)

where this equality is understood in H. Indeed

kU(A+B)¡ exp(i�(A;B))U(A)U(B)k2=2¡ 2RehU(A+B); exp(i�(A;B))U(A)U(B)i=0:

Similarly we have

U(A)U(B)U(C) =U(A)exp(¡i�(B;C))U(B+C)= exp(¡i�(B;C)¡ i�(A;B+C))U(A+B+C)

=exp(¡i�(B;C)¡ i�(A;B+C)+ i�(A+B;C))U(A+B)U(C)

=exp(¡i�(A;B))U(A+B)U(C)
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which implies that, as operators on F :

U(A)U(B)= exp(¡i�(A;B))U(A+B)

which implies also

U(A)U(B)= exp(¡2i�(A;B))U(B)U(A):

This relation will play a very important role in the following and is called the Weyl form of the
canonical commutation relations.

B From the Weyl relation we see that P is the span of all the operators in the form U(A) and
therefore that the state ! is determined by the relation

!(U(A))= exp
�
¡1
2
Q(A;A)

�
:

B From the Weyl relations we deduce also that, if �=0, then the algebra generated by the U(Aj)
acting on F is commutative and therefore �corresponds� to a family of classical random variables
with Gaussian law and covariance matrix Q(Ai; Aj). To make this precise we would need to
represent U(Aj) = ei'(Aj) for some operator '(Aj). This will be unbounded (since it corresponds
to a classical Gaussian). This problem will be dealt in the next section.
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