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1 Quantum random variables

B Three faces. In this section we discuss three equivalent description of a quantum (real) observ-
able:

1. A spectral measure J :B(R)!L(H) on R;

2. A strongly continuous unitary group (Ut)t2R acting on H;

3. A self�adjoint operator X:X �H!H.

The set of all self�adjoint (not necessarily bounded) operators in an Hilbert space is not a nice
space, for example sum of operators could not be self�adjoint. This di�culty is linked to the fact
that unbounded self�adjoint operators are really spectral measures (or unitary groups) and, it
is clear that spectral measures do not possess any natural vector space structure (if they do not
commute).

Indeed we can think e�ectively to an unbounded operator X more as an homomorphism from
the algebra C(R) of bounded continuous functions on R to the bounded operators of H given
by X(f) = f(X) where the operator f(X) is de�ned via the functional calculus associated to the
spectral measure � of X . From this point of view is then clear that there is no natural vector
space notion on these operators and that they are more complex and subtle than the more familiar
bounded operators on H. One could also think that calling them operators is somewhat of a
misnomer.

Below we make precise the connections between the three manifestations of a quantum observable.
We do not aim to give structured proof but more to trace a path to go from one description to the
other. The reader can �nd precise statements and proofs in any book of functional analysis, for
example in the �rst volume of Reed and Simon, or in the book of Parthasaraty.

B From unitary groups to spectral measures and generators. Let (Ut)t2R be a strongly
continuous group of unitary operators on the Hilbert space H. For any f :R!R with continuous
and L1 Fourier transform f̂ we can de�ned the operator Tf by letting

Tf =

Z
R

f̂ (t)(Ut )dt

for all  2 H. Norm continuity of t 7! Ut ensures the existence of the integral as an element in
H, moreover Tf is a bounded operator since

kTf k6
Z
R

jf̂(t)jdtk k;

it is self�adjoint

Tf
�=

Z
R

f̂(t)Ut
�dt=

Z
R

f̂(¡t)Utdt=
Z
R

f̂(t)Utdt=Tf ;

and

TfTg=

Z
R

f̂(t)Utdt

Z
R

ĝ(s)Usds=

Z
R

f̂(t)ĝ(s)Ut+sdtds=

Z
R2

f̂(t¡ s)ĝ(s)Utdtds=Tfg:
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For any unit vector  2 H the map f 7! h (f) = h ; Tf i de�nes a positive linear functional on
smooth compactly supported functions on R. It is positive since

h (f
2)= h ; TfTf i= kTf k> 0:

Let g"(t)= exp(¡"t2/2) then ĝ"(t) = (2�")
¡1/2exp(¡t2/(2")) and as "! 0,

h (g")=

Z
R

(2�")¡1/2exp(¡t2/(2"))h ;Ut idt!k k2=1:

So eventually ¡g"kf k16 f 6 g"kf k1 on all R and ¡kf k1h (g")6 h (f)6 kf k1h (g") which
implies taking "!1 that jh (f)j6 kf k1. Therefore the functional is continuous in the uniform
topology and can be extended to all continuous functions vanishing at in�nity. By Riesz represen-
tation theorem there exists a Borel probability measure � on the one�point compacti�cation R�

of R such that

h (f) =

Z
R�
f(x)� (dx)

and since
R
R
g"(x)� (dx)! 1 as "! 0 this measure can be restricted as a probability measure on

R. From now on � will denote such a restiction. If  is not normalized this measure has mass
k k2. Observe that, for any pair  ; '2H,

h( + '); Tf( + ')i¡ h ; Tf i ¡ h'; Tf'i=2Re h ; Tf'i;

h( + i'); Tf( + i')i¡ h ; Tf i+ h'; Tf'i=2Imh ; Tf'i;

and we can de�ne the complex valued measure on R,

� ;'=
1

2
(� +'¡ � ¡ �')+

i

2
(� +i'¡ � + �');

such that Tf can be extended as a bounded operator to all bounded complex measurable functions
by

h ; Tf'i=
Z
R

f(x)� ;'(dx);

with

kTfk2= sup
k'k61

Z
R

jf(x)j2�'(dx)6 kf k12 :

Moreover we can de�ne a spectral measure J as the mapping B(R)!L(H) given by

h ; J(A)'i=
Z
A

� ;'(dx)

and observe that J(A) is bounded, selfadoint and a projection (i.e. J(A)2 = J(A)) and that
moreover if (Ak)k is a increasing family of Borel sets then J([kAk) = limk!1J(Ak) in the strong
operator tolopology since

kJ(A)'¡ J(B)'k6
Z
R

jIA¡ IB j2�'(dx) =2
Z
R

(1¡ IA\B)�'(dx)! 0
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by dominated convergence. Now observe thatZ
R

eisxJ(dx)= lim
"!0

Z
R

eisxg"(x)J(dx) = lim
"!0

Z
R

ĝ"(t¡ s)Utdt=Us:

Let � the closure of the set of points x2R such that for some �>0 it holds supk'k61�'(B(x;�))>0
where B(x; �) is the ball of radius � around x. Then, if B \�=? we have J(B) =0 and

Tf =

Z
�

f(x)J(dx)

so that the operator Tf can be extended to functions f which are bounded on the set �.

Consider the set X �H de�ned as

 2X ,
Z
R

jxj2� (dx)<+1:

This set is dense in H, indeed J([¡t; t]) !  as t!1 and

�J([¡t;t]) (A)= hJ([¡t; t]) ; J(A)J([¡t; t]) i= h ; J(A\ [¡t; t]) i= � (A\ [¡t; t]):

On X we can de�ne an operator X as

X =

Z
R

xJ(dx) :

We have, for all  2X ,

lim
t!0

Ut¡ 1
t

 = lim
t!0

Z
R

eitx¡ 1
t

J(dx) ! lim
t!0

Z
R

ixJ(dx) ;

as a norm limit and by dominated convergence. Conversely if the limit exists and we call it � we
haveZ

[¡L;L]
x2 � (dx)=





Z
[¡L;L]

xJ(dx) 





2= lim
t!0





J([¡L;L])Ut¡ 1t
 





2= k J([¡L;L])�k2<+1;
so by monotone convergence  2X . So on X we can extend Tf to functions which grows linearly
in x and we identify Tx=X and Teit�=Ut= eitX.

Note also that for and for all  2H



Z
R

eitx¡ 1
t

J(dx) 





2= Z
R

����eitx¡ 1t

����2� (dx) =Z
R

4 sin2(tx/2)
t2

� (dx):

Moreover for all t > 0 we have ����4 sin2(tx/2)t2

����6 jxj2;
on one hand, and on the other hand, by Fatou lemma, for all L> 0,Z

jxj6L
x2� (dx)=

Z
jxj6L

liminf
t!0

4 sin2(tx/2)
t2

� (dx)

6liminf
t!0

Z
jxj6L

4 sin2(tx/2)
t2

� (dx)6 liminf
t!0

Z
R

4 sin2(tx/2)
t2

� (dx)6 sup
t





Ut¡ 1t
 





2:
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Therefore the domain X can be characterised also as the set of vectors for which k(Ut¡ 1) k2/t2
is uniformly bounded as t! 0.

The operator X: X ! H is an unbounded, closed self�adjoint operator, i.e. X = X� including
equality of domains. All the informations about it are carried by the spectral measure J =JX and
by the family of unitarities (Ut)t=(Ut

X)t.

We call an observable the given of a spectral measure on H or equivalently of a one�parameter
strongly continuous group of isometries, or a self�adjoint X . The set �=�(X)�R is the spectrum
of X and it is the support of the spectral measure JX.

B and back. Now let consider the situation where we start from the self�adjoint operator (X;X )
and we would like to reconstruct its spectral measure JX and the unitary group (eitX)t. In order
to do so we �rst construct a bounded operator out of X .

It will be useful to consider �rst the more general situation where X is a symmetric closable
operator de�ned on a dense set X �H. In this case its adjoint X� with domain X � is an extension
of X.

Given an unbounded operator X we say that z 2 C belongs to the resolvent set �(X) of X if
(z ¡X)' = f has a unique solution ' 2 X for all f 2 H and the resolvent operator R(z) = R(z;
X)= (z¡X)¡1: f 7! ' is bounded.

Uniqueness is not a big issue here, indeed if z = x + iy 2 �(X) and (z ¡ X)' = f then
h'; f i= h'; (x¡X)'i= h(x¡X)'; 'i+ iyh'; 'i and

jh'; f ij2= jh(x¡X)'; 'ij2+ y2k'f k2:

Solutions to the equation (z ¡ X)' = f are therefore unique if y =/ 0. Away of the real line the
resolvent is well de�ned whenever exists and bounded by

kR(z)f k6 jIm z j¡1kf k:

For all w; z 2 �(X) we have

R(z)¡R(w)=R(w)(w¡ z)R(z);

which implies that [R(w); R(z)] = 0. It also allows to constuct R(z) from R(w) if jz ¡w j is small
enough by perturbation theory for bounded operators in Banach spaces. Therefore �(X) is an open
set.

By perturbation theory we see also that if w= x+ iy and z = x+ iy 0 then whenever jy ¡ y 0j< y
we can construct R(z) from R(w) with the estimate

kR(z)k6 (1¡ jImw j¡1jw¡ z j)¡1;

and similarly we can construct resolvent for (x�"y)+ iy from the resolvent of x+ iy. So whenever
we have the resolvent in one point of the complex plane away from the real line we can extend it
to all the point in the same half space (with positive or negative imaginary part).

Furthermore if z 2 �(X), for any f 2H

hR(z)f ; (z�¡X)'i= h(z¡X�)R(z)f ; 'i= h(z¡X)R(z)f ; 'i= hf ; 'i:

Therefore the equation (z�¡X)'= g can have at most one solution for any g2H. Whenever it has
one we have hR(z)f ; gi= hf ; 'i so k'k6Ckgk where C does not depends on g. If it has solution
for any g 2H then z�2 �(X) and then taking '=R(z�)g we have hR(z)f ; gi= hf ; R(z�)gi, that is
R(z)�=R(z�).
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If Ran(z¡X) =/ H then there exists a vector  2Ran(z¡X)?\X such that for all '2X ,

0= h(z¡X)';  i= h'; (z�¡X�) i

so  2Ker(z�¡X�). Conversely if Ker(z�¡X�)=/ f0g then Ran(z¡X)=/ H.

WhenX is self�adjoint we have Ker(z�¡X�)=Ker(z�¡X)=f0g since the equation (z�¡X)'=0 has
at most one solution by the considerations above. Therefore Ran(z¡X)=H and the resolvent R(z)
is well de�ned and bounded and CnR� �(X). Boundedness comes from the closed graph theorem.

On the other hand if X is only symmetric but there exists z 2 C such that Ran(z ¡ X) = H =
Ran(z�¡X) (one can take z=�i) then it also holds that CnR� �(X).

In any case, when the resolvent is de�ned both in z and z� we can continue to reason as follows.
Take z 2 �(X) and denote with �= Im z. We have

R(z)¡R(z�)=R(z�)(z�¡ z)R(z)= 2i�R(z)�R(z);

and letting U =1+2i�R(z) we have

U�U =(1¡ 2i�R(z�))(1+ 2i�R(z)) =1+2i�(R(z)¡R(z�))+ 4�2R(z�)R(z)

=1+2i�(R(z)¡R(z�)¡ 2i�R(z�)R(z))= 1:

So the operator U is unitary. It is now not di�cult to show that there exists a spectral measure
� on D= fjz j=1g�C such that

U =

Z
D

u�(du):

(How?)

Now we want to show that �(f1g)=0. Assume that there exists f 2H such that �(f1g)f = f . This
implies

(1+ 2i�R(z))f =Uf =

Z
D

u�(du)�(f1g)f = f

so R(z)f =0 and then f =0. Consider now the function

g(u)= z¡ 2i� 1
u¡ 1 ;

such that

g(u)= z�¡ 2i� 1
u�¡ 1 = z+2i�

h
u

u¡ 1 ¡ 1
i
= g(u)

and de�ne the self�adjoint unbounded operator

Y =

Z
juj=1;u=/ 1

g(u)�(du):

We have also

R(z) =
U ¡ 1
2i�

=

Z
juj=1;u=/ 1

(u¡ 1)
2i�

�(du):

Now

YR(z)=

Z
juj=1;u=/ 1

g(u)
(u¡ 1)
2i�

�(du)=

Z
juj=1;u=/ 1

(z¡ 1)�(du)= z¡ 1
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So R(z) is also the resolvent of Y in z. Moreover from the spectral decomposition is easy to see
that R(z)H is dense in H, that R(z)H�X \Y and �nally that

0= (z¡Y )RY (z)g¡ g=(X ¡Y )R(z)g

soX=Y on R(z)H and by density and closedness of the two operators we obtain X=Y and deduce
that X is self�adjoint. Finally, by a change of variable in the spectral integral we can construct a
spectral measure J on R such that

X =

Z
R

xJ(d�):

2 Structure of the quantum Gaussian

B Up to now we paied attention to work only with the bounded unitary operators U(A) while
the quantum analog of the Gaussian should be the the operator q(A) appearing in the expression
U(�A) = exp(i�q(A)). It's rigorous de�nition goes as follows. Note that

U(�A)U(�A)=U((�+ �)A);

so for any A, the family (U(�A))�2R is a one�parameter group of unitary operators and, if we
show that the family is strongly continuous, we can apply Stone's theorem and deduce that there
exists on F a self�adjoint operator q(A), the generator of the group (U(�A))�2R, such that the
formula U(�A)= exp(i�q(A)) holds in the sense of functional calculus.

Strong continuity for unitary operators is equivalent to weak continutity (actually by a theorem of
von Neumann weak measurability su�ces, see Reed and Simon, Vol I, Theorem VIII.9), indeed if
(Ut)t is a unitary group and f a vector

k(Ut¡Us)f k2=2(kf k2¡Re hUtf ; Usf i)= 2(kf k2¡Rehf ; Ut¡sf i)! 0

whenever hf ; Ut¡sf i! 0.

Weak continuity for our family (U(�A))�2R on vectors in the span of the monomials in (U(B))B
is easy to obtain from the from of the pseudo�characteristic function �(A) and then a density
argument using that the operators (U(�A))�2R are unitary give easily weak continuity and then
strong continuity.

Note that

hu; ei�'(A)ui= e¡�2Q(A;A)/2;

from which we can deduce that for any continuous and bounded function f :R!R we have

hu; f('(A))ui=
Z
R

f(x)e¡x
2/(2Q(A;A)) dx

(2�Q(A;A))1/2
:

Recall that the domain D(q(A)) of q(A) is the set of elements  2F such that

lim
t!0

�t
A = lim

t!0

U(tA)¡ 1
t

 

exists in the norm sense or also such that k�t
A k is uniformly bounded. Now

k�t
Auk2= 1

t2
(2¡ 2RehU(tA)u; ui) = 1

t2

�
2¡ 2exp

�
¡1
2
t2Q(A;A)

��
!Q(A;A)<+1;
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so we have u2D(q(A)). Moreover

�t
AU(B) =

U(tA)¡ 1
t

U(B) =U(B)

 
e¡i�(tA;B)¡ 1

t
+�t

A

!
 

so

[�t
A; U(B)] =

e¡i�(tA;B)¡ 1
t

U(B)

and since e¡i�(tA;B)¡ 1
t

!¡i�(tA;B) we see that U(B)D(q(A))�D(q(A)) and

[q(A); U(B)] =�(A;B)U(B):

Now

hu;�t
Aui= 1

t
hu; (U(tA)u¡u)i= 1

t

h
e
¡1

2
Q(tA)¡ 1

i
! 0;

and

hU(B)u;�t
Aui= 1

t
hu; U(¡B)(U(tA)u¡u)i= 1

t

h
e¡i�(¡B;tA)e

¡1

2
Q(¡B+tA)¡ e¡

1

2
Q(¡B)

i
![i�(B;A)+Q(B;A)]e

¡1

2
Q(¡B)

= hU(B)u; [i�(B;A)+Q(B;A)]ui;

so q(A)u is given by the expression

hU(B)u; q(A)ui= hU(B)u; [i�(B;A)+Q(B;A)]ui

Now, in general computations of expression of the form k�t
B k2 proceed in the same way and one

can show that the domain D(q(A)) contains all the vectors of the form Y
j

q(Aj)

!
u:

Otherwise stated, u2D(
Q
j q(Aj)) for all combinations of operators and that we have

!(q(A)q(B))=Q(A;B)+ i�(A;B):

BWick's theorem More generally we have

!(q(A1)���q(A2n+1))= 0

and

!(q(A1)���q(A2n))=
X
(�;�)

Y
i=1

n

!(q(A�i)q(A�i))

where the sum runs over all the pairings ((A�1; A�1); :::; (A�n; A�n)) of the elements of the vector
(A1; :::; A2n).

BA remark about the Quantum CLT. The identi�cation of the generators of the groups
(U(�A))� is necessary to obtain the random variables object of our CLT. In particular now we can
state results of the type weak convergence. For example we can say that for any two continuous
functions f ; g:R!R we have

�
N(f(�N(A))g(�N(B)))!hu; f('(A))f('(B))ui
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as N!1. Indeed we can approximate uniformly these functions with functions f"; g" such that
f̂"(t); ĝ"(t) are compactly supported and then observe that

�
N(f"(�N(A))g"(�N(B))) =

Z
R2

f̂"(t)ĝ"(s)�

N(eit�N(A)eis�N(B))dtds!

!
Z
R2

f̂"(t)ĝ"(s)hu; eit'(A)eis'(B)uidtds= hu; f"('(A))f"('(B))ui

so taking away the approximation we deduce the claim.

3 Stone�von Neumann theorem

We now focus ourselves on a particular situation of two strongly continuous unitary groups (Ut)t
and (Vt)t in an Hilbert space H satisfying the Weyl commutation relation

UtVs= e
¡istVsUt:

This is a particular case of our Quantum Gaussian space. We will prove now that this pair of
operators is unitarily equivalent to a canonical model constructed on the Hilbert space L2(R).

Let J to be the spectral resolution associated to (Vs)s and with Tf= f(X) where X is the generator
of (Vs)s we have

Utf(X)Ut
�=

Z
f̂(s)UtVsUt

�ds=

Z
f̂(s)e¡istVsds= f(X ¡ t)

so in particular if we let Es= J((¡1; s]) we have UtEsUt�=Es+t. Let Ht=EtH so that Et is the
orthogonal projection on Ht.

BScrew lines. We say that a curve x: R!H is a screw line in H if x(0) = 0, x(t) 2 Ht and
x(t)¡x(s)?Hs for all t > s and Uh(x(t)¡x(s)) =x(t+h)¡x(s+h) for all h> 0, s< t.

Theorem 1. If H¡1=/ H there exists a non�zero screw line.

Proof. Assume that there are no nontrivial screw line. Let E =H0 and Pt=E0Ut and note that
it de�ned a strongly continuous semigroup of contractions of E . The assumption H¡1 =/ H is
equivalent to require that H0 =/ H. Let (A; D(A)) the generator of Pt according to Hille�Yosida
theory namely the closed, densely de�ned operator such that @t+Pt = APt for all  2 D(A).
Take f 2D(A)�E and observe that

x(t)=Utf ¡U0f ¡
Z
0

t

UsAfds

is a screw line (better, can be extended as such). Indeed

EsUtf =EsUsUt¡s=UsE0Ut¡s=UsPt¡s;

Es(x(t)¡x(s)) =Es(Pt¡sf ¡P0f)¡
Z
s

t

EsPr¡sAfdr=0;

and

Uh(x(t)¡x(s))=Ut+hf ¡Us+hf ¡
Z
s

t

Ur+hAfds=x(t+h)¡x(s+h):
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Therefore we have Utf ¡U0f ¡
R
0

t
UsAfds=0 according to our assumption. Let X be the (Stone)

generator of the group (Ut)t then for all f 2D(A) we have f 2D(X) and iXf =Af . Let

R�=

Z
0

1
e¡�tPtdt; S�=

Z
0

1
e¡�tUtdt:

For all u 2 E we have (� + A)R�u = u therefore it also holds that (� + iX)R�u = u and as a
consequence that S�u=R�u. From this we can deduce that Ut= Pt on E and that Ut maps E in
itself. But now if f 2Hs we also have Utf 2Ht+s and therefore Ht�H0 for all t> 0 which implies
that H=H0 contrary to assumptions. �

Remark 2. In order to claim that Pt=Ut we use uniqueness of the Laplace transform. Note that
for any two vectors  ; '2H if we let f(t)= h ; Pt'i¡ h ;Ut'i we haveZ

0

1
e¡�tf(t)dt=0; (1)

for all � > 0. The function f is continuous and bounded. If we conclude that f(t) = 0 we have
proved that Pt=Ut for all t>0 since ';  are arbitrary. Now we proceed by noting that (1) impliesZ

0

1
e¡�0tg(t)f(t)dt=0

for all g given by �nite linear combinations of the form g(t)=
P
cme

¡�mt for arbitrary (cm2R)m
and (�m>0)m. We denote by L the span of such functions. Here �0>0 is a �xed positive number.
Fix a large L> 0 and note that L is also an algebra with unit which separates the points of [0; L].
Therefore by the Stone�Weierstrass theorem this algebra is dense in C([0;L];R) with the uniform
norm. As a consequence we have that for any g 2 Cc([0; L]; R) eq. (1) also holds and since L is
arbitrary it holds for all g compactly supported. At this point is enough to take a sequence of
continuous functions gn! �(t¡ t0) weakly to deduce that f(t0)= 0 for any t02R.

B The subspace generated by a screw line. Now consider a non-zero screw line x. Note that
by orthogonality of the increments we must have

kx(t)¡x(s)k2= cjt¡ sj:

(why?) We can choose c=1 without loss of generality. For any f 2L2(R) de�ne the integral

I(f)=

Z
f(s)dx(s);

in the same way we use to de�ne the Ito integral, namely, observe that for simple f we have the
isometry formula

kI(f)k2=
Z
jf(s)j2ds;

and then extend the map by continuity. This is an isometric mapping of L2(R) into a closed
subspace Mx of H. This subspace is invariant under Ut and Et and moreover

UtI(f)Ut
�=Ut

Z
f(s)dx(s)Ut

�=

Z
f(s)dx(s+ t)=

Z
f(s¡ t)dx(s) = I(utfut�)

and

EtI(f)=Et

Z
f(s)dx(s)=

Z
Is6tf(s)dx(s) = I(etf)
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where we introduced two operators on L2(R) as etf(s)= Is6tf(s) and utf(s)= f(s¡ t).

Now ifMx
? is nontrivial we can extract another screw line and continue inductively until we exhaust

the separable Hilbert space H.

BThe Schrödinger model. At this point we realised that we can decompose H in a countable
family of mutually orthogonal spaces isometric to L2(R) in such a way that Ut is sent to ut and
Et to et. Seeing (et)t as a spectral repartition function we can also construct vt as the image of Vt
and observe that vt acts as vtf(s) = eistf(s) on L2(R). Moreover note that the pair u; v sati�es
the Weyl relations as due

utvs= e
istvsut:

This particular realization is called the Schrödinger model of the canonical commutation relations.
Indeed calling p; q the generators of u; v respectively we have (at least formally for now)

[p; q] = i:

If U ; V acts irreducibly then there can be only one factor in this direct sum decomposition.

BIrreducibility.We want to prove now that the Schrödinger model is itself irreducible, that is the
only stable subspaces for (Et) and (Ut) are f0g and L2(R). It will be su�cient to prove that there
is ony one normalized screw line � in L2(R). Let f = �2L2(R) since f is adapted we have f(x)=0
if x > 0. Moreover since (�(t)¡ �(0))?e0L2(R) we have (�(t)¡ �(0))(x) = f(x+ t)¡ f(x) = 0 if
x<0. Therefore f(x)= f(x+ t) for all t>0 and f is constant on R¡. By normalization f =I[¡1;0]
and �(t)= I[¡1;t] can be the only normalized screw line, proving irreducibility.

Therefore we have, in particular, proven the following theorem.

Theorem 3. (Stone�von Neumann) Assume (Ut)t and (Vt)t are two strongly continuous uni-
tary groups in an Hilbert space H satisfying the Weyl commutation relations

UtVs= e¡istVsUt; s; t2R

and acting irreducibly on H then there is an isomorphism of Hilbert spaces U :H! L2(R) under
which Ut; Vs are transformed into ut; vs.

10


	Sheet 6
	1 Quantum random variables
	2 Structure of the quantum Gaussian
	3 Stone–von Neumann theorem


