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1 Quantum Gaussian (continued)

B Necessity of in�nite dimensional realization. Conside a standard pair Ut; Vs We know that
it is not possible to realise it on a �nite dimensional Hilbert space H, due to Stone�von Neumann
theorem. Let us also see a di�erent argument, which goes through Heisenberg's commutation
relation. Let Ut= eitP and Vs=eisQ where P ; Q are the self�adjoint Stone generators. If H is �nite
dimensional both operators are bounded and by di�erentiating twice the Weyl relations for Ut; Vs :

eitPeisQ= eisteisQeitP ;

we deduce that P ; Q should satisfy Heisenberg's commutation relation:

PQ¡QP=[P ; Q] = i:

Therefore we should also have for all n> 1

[P ; Qn] =PQn¡QnP =PQn¡QPQn¡1+QPQn¡1¡Q2PQn¡2+Q2PQn¡2¡ ���¡QnP

=[P ; Q]Qn¡1+Q[P ; Q]Qn¡2+ ���+Qn¡1[P ; Q] = inQn¡1:

But now k[P ;Qn]k62kP kkQnk62kP kkQkn and kQn¡1k=kQkn¡1. Moreover we know also that
kQk=/ 0 otherwise [P ; Q]= i cannot hold. So we conclude that kP kkQk>n for all n> 0, which is
impossible if both operators are bounded. So one of the two has to be unbounded and H has to
be in�nite dimensional.

B Irreducibility of the Schrödinger model. Another way to prove irreducibility of the
Schrödinger model is to observe that it is equivalent to the existence of two vectors  ; ' 2
L2(R) for which 0 = h ; UtVs'i for all t; s 2 R. Using the explicit nature of the Schrödinger
model this matrix elements are given by

0= h ;UtVs'i=
Z
R

 �(x)eis(x¡t)'(x¡ t)dx=
Z
R

 �(x+ t)eisx'(x)dx

Being this true for all s this implies the vanising of the Fourier transform of the L1 function
ht(x)=  �(x+ t)'(x) which in turn implies the vanishing of the function itself for almost all x and
all t2R. Therefore 0=

R
R
jht(x)j2dx=

R
R
j (x+ t)j2j'(x)j2dx and integrating in t on R and using

Fubini (which is allowed since everything is positive) we obtain

0=

Z
R

dt

Z
R

jht(x)j2dx=
Z
R

�Z
R

j (x+ t)j2dt
�
j'(x)j2dx= k k2k'k2

therefore  = '=0 and the model is irreducible.

B Another proof of the Stone�von Neumann theorem. There are various proof of this
theorem, the following is taken from [Strocchi, F. An Introduction to the Mathematical Structure of
Quantum Mechanics: A Short Course for Mathematicians. 2 edition. New Jersey: World Scienti�c
Publishing Company, 2008.]
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Introduce Weyl operators given by

W (s; t)= e¡ist/2VtUs= e
ist/2UsVt; s; t2R;

for which W (s; t)�=(W (s; t))¡1=W (¡s;¡t) and

W (s; t)W (s0; t 0)= ei(s
0t¡st0)/2W (s+ s0; t+ t 0) = ei(s

0t¡st 0)W (s0; t 0)W (s; t):

Consider the operator

P :=
1

2�

Z
R2

dsdte¡(t
2+s2)/4W (s; t)=P �;

de�ned as strong limit of Riemman sums. We note that P =/ 0 Since otherwise

0=W (s0; t 0)�PW (s0; t 0)=
1
2�

Z
R2

dsdte¡(t
2+s2)/4ei(s

0t¡st0)W (s; t)

which would imply that for any two vectors  ; ' the function (s; t) 7! e¡(t
2+s2)/4h ; W (s; t)'i

vanish and then in turn that W (s; t)= 0. Next we note that

PW (s0; t0)P = e¡((s
0)2+(t0)2)/4P

which can be proven by performing a change of variable in the Gaussian integrals in the l.h.s. This
equations implies that P 2=P , i.e. P is a non-zero projection and therefore it exists a unit vector
 0=P 0. If '? 0 and P'= ' then

h 0;W (s; t)'i= e¡(s2+t2)/4h 0; 'i=0

and since the action is irreducible we deduce that '=0. For the vector  0 we have

h 0;W (s; t) 0i= e¡(s
2+t2)/4:

This expression is equivalent to the pseudo�caracteristic function for the generators of Ut and Vs.
By using the GNS construction we deduce that there is an isomorphism of Hilbert spaces between
any two irreducible realisations of the Weyl commutation relations. In particular they are all
isomorphic to a given one (which can be taken to be the Schrödinger model).

B Reducible actions. If W (s; t) do not act irreducibly we do not have anymore that the range
of P is one dimensional. However in general

hW (s0; t 0)P ;W (s; t)P'i= h ; PW (¡s0;¡t 0)W (s; t)P'i

=ei(s
0t¡st0)/2h ; PW (s¡ s0; t¡ t 0)P'i= ei(s0t¡st0)/2e¡((s¡s0)2+(t¡t 0)2)/4hP ; P'i

=hW (s0; t 0) 0;W (s; t) 0iL2hP ; P'i

where there we used the irreducible canonical model to represent the numerical factor and where
 02L2(R) is a unit vector in the range of P for the canonical model. As a consequence the map
U : E 
 Im(P )!H given by

U(W (s; t) 0
 ') =W (s; t)';

where E= span(W (s; t) 0:s; t2R)�L2(R) can be extended as an isometry of L2(R)
 Im(P )!H.
Indeed E is dense in L2(R) due to the irreducibility of the Schrödinger model.

2



Moreover the image of U is all of H, indeed if '2H is orthogonal to Im(U) we have for any  2H
and any s0; t 02R

0= h';W (s0; t 0)PW (¡s0;¡t 0) i= 1
2�

Z
R2

dsdte¡(t
2+s2)/4ei(s

0t¡st0)h';W (s; t) i

therefore we have h';W (s; t) i e¡(t2+s2)/4=0 and as a consequence h';W (s; t) i=0 for all s; t
since this function is continuous in s; t. But this implies h';W (0;0) i= h';  i=0 and then '=0
since this holds for any  2H.

So if the action of the Weyl pair is not irreducible we can state the Stone�von Neumann theorem
as an isomorphism between H and L2(R)
K where the image of the Weyl pair acts canonically
on the �rst factor and trivially on the second.

B Plancherel. Let Ut; Vs be the Schrödinger model on L2(R). Let Ut0=V¡t and Vs0=Us then U 0;
V 0 is another pair of strongly continuous unitary groups satisfying Weyl commutation relations and
acting irreducibly on L2(R), therefore by the Stone�von Neumann theorem there exists an unitary
operator on L2(R) which take this pair to the canonical pair U ; V . This is the Fourier transform.

B Other consequences. Let W~ (s; t) be a family satisfying the Weyl commutation relations on
a separable Hilbert space K. We have proven that each such pair is equivalent to a direct sum of
copies of the Schrödinger modelW (s; t) acting on L2(R). In particular for every vector f 2K there
exists vectors fn2L2(R) such that

hf ;W~ (s; t)f iK=
X
n

hfn;W (s; t)fniL2(R)=Tr(�W (s; t))

which means that any law which can be constructed on a canonical pair (a pair satisfying Weyl
relations) can be also contructed on the standard model. This constuction is equivalent to that of
a canonical process in standard probability.
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